

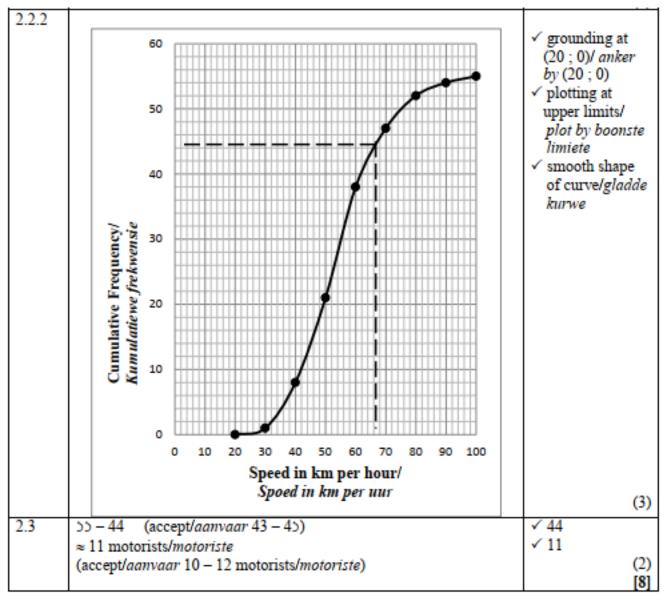
MATHEMATICS

PAST PAPER BOOKLET 2020

Mathematics Past Paper Revision By Topic

11 Analytic Geometry

42 Trigonometry


67 Euclidean Geometry

Question 1 November 2014

1.1	016	016
1.1	$\overline{x} = \frac{816}{12} = 68$	√ <u>816</u>
	12	12
		✓ 68
		(2)
1.2	$\sigma = 18,42$	√ answer/antw
	,	(1)
1.3	(68-18,42;68+18,42) = (49,58;86,42)	√√ interval
	6 candidates had a mark within one standard deviation of the	✓ answer/antw
		(3)
	mean/6 kandidate het 'n punt binne een standaardafwyking vanaf	(3)
	die gemiddelde.	
1.4	a = 22,828 = 22,83	✓ value of a/
		waarde van a
	b = 0.66429 = 0.66	✓ value of b/
	,,	waarde van b
	. 0 _ 0.66v . 22.02 OD/OF 0 _ 22.02 . 0.66v	✓ equation/vgl
	$\hat{y} = 0.66x + 22.83$ OR/OF $\hat{y} = 22.83 + 0.66x$	
1.5	* 077 22.02	(3)
1.5	$\hat{y} = 0,66x + 22,83$	
	y = 0,66(60) + 22,83	✓ subs of 60 into
	62,43% ≈ 62%	equation
		✓ answer/antw
	OR/OF	(2)
	UNUF	(-)
	63 609/ - 639/	√√ answer/antw
	62,69% ≈ 63%	
1.6	(82; 62)	(2) ✓ answer/antw
1.0	(02,02)	
		(1)
		[12]

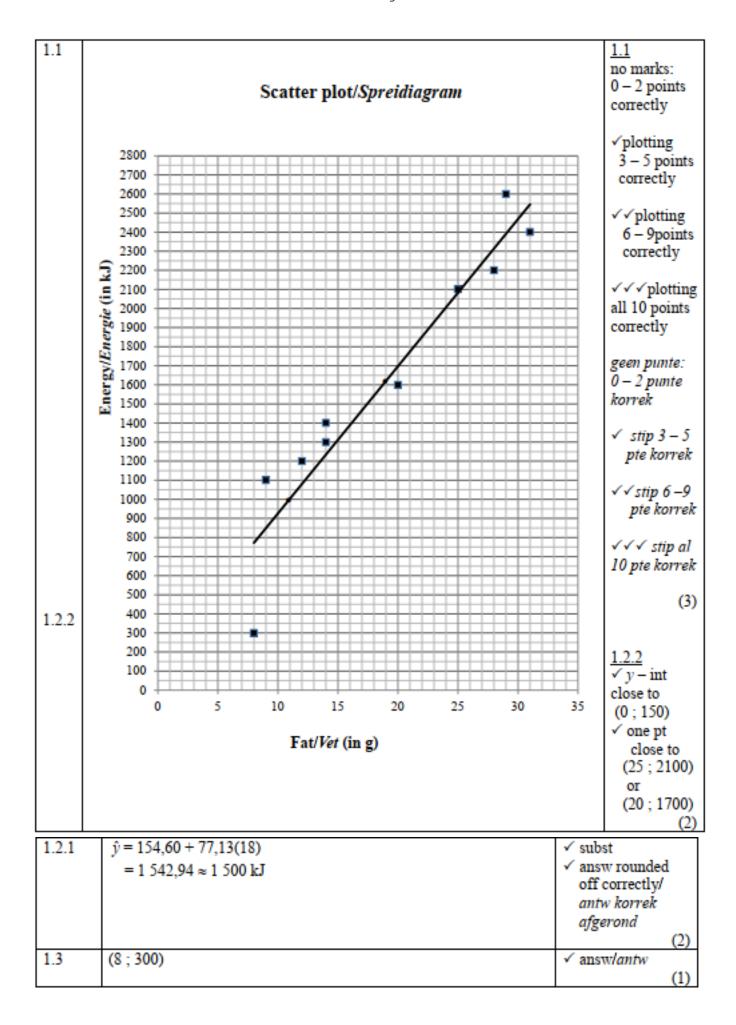
Question 2 November 2014

2.1		$50 < x \le 60$ OR/OF $50 \le x < 60$ OR/OF between 50 and $60/tussen 50$ en 60									
2.2.1	Class Klas	Frequency Frekwensie	Cumulative frequency Kumulatiewe frekwensie		(1)						
	$20 < x \le 30$ $30 < x \le 40$	1 7	1 8]	√ 8						
	$40 < x \le 50$	13 17	21								
	$50 < x \le 60$ $60 < x \le 70$	9	38 47	1							
	$70 < x \le 80$ $80 < x \le 90$	5	52 54	-							
	90 < x ≤ 100	1	55]	√ 55 (2)						

Question 1 Feb March 2015

1.1	$\overline{x} = \frac{3310}{21}$ = 157,62 Answer only: Full marks slegs antw: volpunte	$\sqrt{\frac{3310}{21}}$ $\sqrt{157,62}$ (2)
1.2	(131; 142,5; 151; 173; 189)	✓ 131 and/ en 189 ✓ 142,5 ✓ 173 ✓ 151 (4)
1.3	131 142,5 151 173 189 120 130 140 150 160 170 180 190 200	✓box/mond ✓ whiskers/ snor

Statistics and Regression Memo


1.4	positively skewed/positief skeef OR/OF skewed to the right/skeef na regs	✓ answer/
		antwoord
		(1)
1.5	$\sigma = 17,27$	√√answer/
		antwoord
		(2)
1.6.1	$\bar{x} = 157,62 + p$	✓ answer
		(1)
162	17.27	√ answer/
1.6.2	$\sigma = 17,27$	· dillowell
		antwoord
		(1)
		[13]

Question 2 Feb March 2015

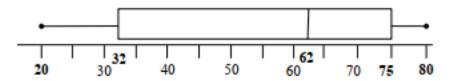
2.1	As the temperature increases, the sales of ice-creams increase/Soos die temperatuur styg, neem die verkope toe.	✓ reason/rede (1)
	OR/OF	
	As the temperature decreases, the sales of ice-creams decrease/Soos die temperatuur daal, neem die verkope af.	✓ reason/rede (1)
2.2	The liveable temperature cannot keep on increasing/Die leefbare temperatuur kan nie aanhou styg nie.	✓ reason/rede (1)
2.3	a = -460,35 b = 30,09 $\hat{y} = 30,09x - 460,35$ OR/OF $\hat{y} = -460,35 + 30,09x$ Answer only: Full marks slegs antw: volpunte	√√ -460,35 √ 30,09 √ equation/vgl (4)
2.4	r = 0.96	√ 0,96 (1)
2.5	There is a <u>very strong</u> positive relationship (correlation)/Daar is 'n <u>baie sterk</u> positiewe verband (korrelasie).	✓ very strong/baie sterk (1) [8]

Question 1 November 2015

Fat/Vet (in g)	9	14	25	8	12	31	28	14	29	20
Energy/Energie (in kJ)	1 100	1 300	2 100	300	1 200	2 400	2 200	1 400	2 600	1 600

Statistics and Regression Memo

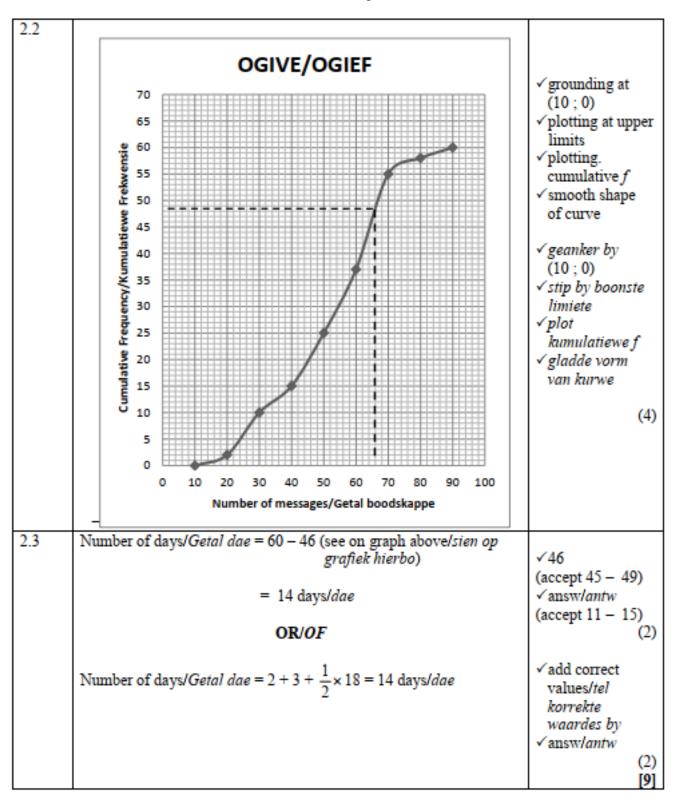
1.4	r = 0,9520 ≈ 0,95	✓✓ answ/antw
		(2)
1.5	very strong positive relationship/	✓ strong/ sterk
	baie sterk positiewe verband	(1)
		[11]


Question 2 November 2015

Sum of the values on uppermost faces/ Som van die waardes op boonste vlakke	Frequency/ Frekwensie
2	0
3	3
4	2
5	4
6	4
7	8
8	3
9	2
10	2
11	1
12	1

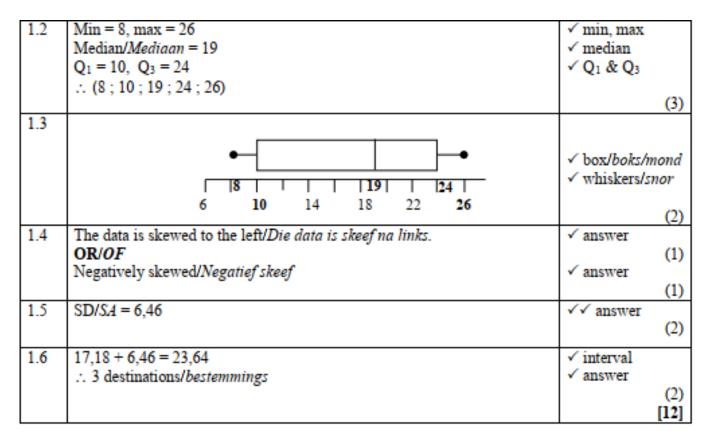
2.1	mean/gemiddelde = $\frac{2(0) + 3(3) + 4(2) +12(1)}{30} = \frac{202}{30}$	√202
	= 6,73	✓ answ/antw (2)
2.2	median/mediaan = $\frac{T_{15} + T_{16}}{2} = \frac{7 + 7}{2} = 7$	✓✓ answlantw (2)
2.3	SD/SA = 2,264 ≈ 2,26	✓✓ answ/antw (2)
2.4	(6,73-2,26;6,73+2,26) = $(4,47;8,99)$ $\therefore 4+4+8+3=19 \text{ times/keer}$	✓lower boundary ✓upper boundary ✓ answ/antw
		[9]

Question 1


Feb March 2016

1.1	The da	√answ/antw											
	The da	ta is 1	√answ/antw	(1)									
1.2	Range/	✓ max. – min. ✓ answlantw	(2)										
1.3	25% of	f the l	learners	faile	d/van a	die lee	rders h	et gedi	ruip			√ √answlantw	
1.4	$54 = \frac{445 + T_4}{9}$ $T_4 = 41$											✓ 20 ✓ ✓ 41 ✓ 62	
		20	28	36	41	62	69	75	75	80		√ 75 √ 80	
													(6) [11]

Question 2 Feb March 2016


2.1	Mean/Gemiddelde = $\frac{2(15) + 8(25) +2(85)}{60} = \frac{3080}{60}$	√ 3 080 √ 3080	
	= 51,33 messages per day/boodskappe per dag	60	
1		√answ/antw	
			(3)

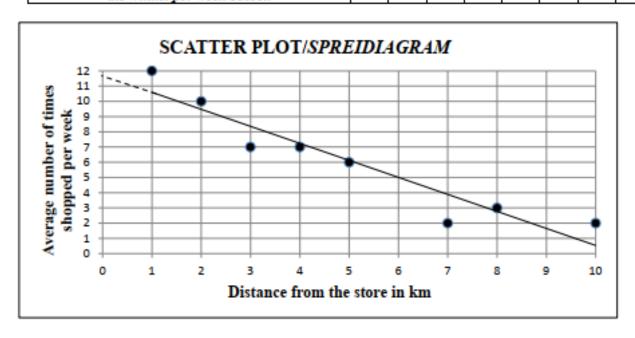
Question 1 May June 2016

8	8	10	12	16	19	20	21	24	25	26

1.1	189		√189
	Mean/Gemiddelde = $\frac{165}{11}$ = 17,18	Answer only: Full marks Slegs antwoord: Volpunte	✓ answer

Question 2 May June 2016

Temperature at midday (in °C) Middaguur- temperatuur (in °C)	18	21	19	26	32	35	36	40	38	30	25
Number of bottles of water (500 ml) Getal bottels water (500 ml)	12	15	13	31	46	51	57	70	63	53	23


2.1	(30;53)	√answer	
	(50,55)		(1)
2.2	a = -38,51	✓ value a	
	b = 2.68	✓ value b	
	$\hat{y} = 2,68x - 38,51$	√ equation	
			(3)
2.3	∴ $\hat{y} \approx 36,53$ bottles	✓ ✓ answer	
			(2)
	OR/OF		
	$\hat{y} \approx 2,68(28) - 38,51$	√ substitution	
	•	√ answer	
	≈ 36,53 bottles		(2)

Statistics and Regression Memo

2.4	Strong/Sterk The majority of the points lie close to the regression line./Die meerderheid punte lê naby die regressielyn.	✓ strong/sterk ✓ reason/rede	(2)
	OR/OF		
	Strong/Sterk $r = 0.98$	✓ strong/sterk ✓ reason/rede	
			(2)
2.5	Temperature cannot rise beyond a certain point as this would be life	✓ reason/rede	
	threatening OR there is only so much water one can consume before it		(1)
	becomes a risk to your health (hyponatremia)./Temperatuur kan nie hoër		
	as 'n sekere punt styg nie, anders raak dit lewensgevaarlik. OF 'n persoon		
	kan net 'n sekere hoeveelheid water inneem, anders raak dit 'n		
	gesondheidsrisiko		[9]

Question 1 November 2016

Distance from the store in km Afstand vanaf die winkel in km	1	2	3	4	5	7	8	10
Average number of times shopped per week								
Gemiddelde aantal keer wat kopers	12	10	7	7	6	2	3	2
die winkel per week besoek								

1.1	Strong/Sterk	✓
		(1)
1.2	-0,95 (-0,9462)	✓
		(1)
1.3	a = 11,71 (11,7132)	√ value of a
	$b = -1,12 \ (-1,1176)$	√ value of b
	$\hat{y} = -1,12x + 11,71$	✓ equation/vgl
		(3)
1.4	$\hat{y} = -1,12(6) + 11,71$	✓ substitition
	= 5 times	✓ answer
1	2 14442	(2)

1.5	On scatter plot/Op spreidiagram	✓ A line close to any 2 of the following
		points:
		$(5; 6)$ or $(10; \frac{1}{2})$ or
		(6; 5) or (0; 11,7)

	Question 2 November 2				
2.1	Positively skewed OR skewed to the right/positief skeef OF skeef na regs	√ answer (1)			
2.2	Range/Omvang = 2,21 - 1,39 = 0,82 m	✓ subtract values ✓ answer (2)			
2.4	Intervals Cumulative frequency Kumulatiewe frekwensie 1,3 \le x < 1,5 24 1,5 \le x < 1,7 95 133 1,9 \le x < 2,1 156 2,1 \le x < 2,3 160 160 165 160 170	✓95, 133, 156 ✓160 ✓upper limits / boonste limiete ✓cum.fl kum.f ✓shape/ vorm ✓grounded geanker			
2.5	method (using 80 to determine the height) 1,65 (accept any value between 1,6 and 1,69) The mean would change by 0,1 m Die gemiddelde sal met 0,1 m verander	(4) ✓ method ✓ answer (2) ✓ answer (1) ✓ answer (1) [13]			

Question 3 November 2014

3.2 $(x-5)^2 + (y-4)^2 = 25$	2.4	10: 6	
3.2 $(x-5)^2 + (y-4)^2 = 25$ \checkmark equation/vgl (1) 3.3 $A(x; 0)$ $(x-5)^2 + (0-4)^2 = 25$ $(x-5)^2 + (0-4)^2 = 25$ $x^2 - 10x + 25 + 16 = 25$ $(x-5)^2 + 16 = 25$ $x^2 - 10x + 16 = 0$ $(x-5)(x-2) = 9$ $(x-8)(x-2) = 0$ $(x-5) = 3$ $(x-8)(x/2) = 0$ $(x-8)(x/2) = 0$ $(x-6)(x-2) = $	3.1	r = MN = 5	✓ answer/antw
3.3 $A(x; 0)$ $(x-5)^2 + (0-4)^2 = 25$ $(x-5)^2 + (0-4)^2 = 25$ $x^2 - 10x + 25 + 16 = 25$ $(x-5)^2 + 16 = 25$ $x^2 - 10x + 16 = 0$ OR/OF $(x-5)^2 = 9$ $(x-8)(x-2) = 0$ $(x-6) = 3$ $(x-8)(x-2) = 0$ $(x-6) = 3$ $(x-8)(x-2) = 0$ $(x-6) = 3$ $(x-$			(1)
3.3 $A(x; 0)$ $(x-5)^2 + (0-4)^2 = 25$ $(x-5)^2 + (0-4)^2 = 25$ $x^2 - 10x + 16 = 05$ $(x-5)(x-5)^2 = 9$ $(x-5)(x-2) = 0$ $($	3.2	$(x-5)^2 + (y-4)^2 = 25$	√equation/vgl
			(1)
	3.3	A(x:0)	✓ substitute into ea/
		$(x-5)^2 + (0-4)^2 = 25$ $(x-5)^2 + (0-4)^2 = 25$	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$x^2 - 10x + 25 + 16 = 25$ $(x - 5)^2 + 16 = 25$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$x^2 - 10x + 16 = 0$ OR/OF $(x - 5)^2 = 9$	✓ standard form/
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$(x-8)(x-2)=0$ $(x-5)=\pm 3$	
3.4.1 $m_{MB} = \frac{4-0}{5-8}$ $= -\frac{4}{3}$ (2) 3.4.2 $m_{MB} \times m_{PB} = -1$ (tangent \perp radius/ $rkl \perp radius$) $m_{MB} \times m_{PB} = -\frac{4}{3}$ $= -\frac$		$\therefore x = 8 \text{ or/of } x = 2 \qquad \therefore x = 8 \text{ or/of } x = 2$	
3.4.1 $ m_{MB} = \frac{4-0}{5-8} $ $ = -\frac{4}{3} $ $3.4.2 $ $ m_{MB} \times m_{PB} = -1 $ $ m_{PB} = \frac{3}{4} $ $ y = \frac{3}{4}x + c $ $ 0 = \frac{3}{4}(8) + c $ $ y = \frac{3}{4}x - 6 $ $ y = \frac{3}{4}x - 6 $ $ 0 = \frac{3}{4}(8) + c $ $ y = \frac{3}{4}x - 6 $ $ 0 = \frac{3}{4}(x - 8) $ $ 0 = \frac{3}{4}(x - 8)$		∴ A(2;0) ∴ A(2;0)	I .
3.4.1 $m_{MB} = \frac{4-0}{5-8}$ $= -\frac{4}{3}$ $\sqrt{\frac{1}{5-8}}$ $\sqrt{\frac{1}{$			
	2	1.0	
	3.4.1	$m_{\rm MB} = \frac{4 - 0}{100}$	
3.4.2 $m_{MB} \times m_{PB} = -1$ (tangent \perp radius/ $rkl \perp radius$) $m_{MB} \times m_{PB} = -1$ $m_{MB} \times m_{PB} = -1$ (tangent \perp radius/ $rkl \perp radius$) $m_{MB} \times m_{PB} = -1$ $m_{MB} \times m_{PB} = \frac{3}{4}$ $m_{PB} =$		= -4	1 1
3.4.2 $m_{MB} \times m_{PB} = -1$ (tangent \perp radius/ $rkl \perp radius$) $m_{PB} = \frac{3}{4}$ $y = \frac{3}{4}x + c$ OR/OF $y - y_1 = \frac{3}{4}(x - x_1)$ $y = \frac{3}{4}x - 6$ $y = \frac{3}{4}x - 6 = 9$ y		3	$\sqrt{m_{\rm MB}} = -\frac{4}{3}$
3.4.2 $m_{MB} \times m_{PB} = -1$ (tangent \perp radius/ $rkl \perp radius$) $m_{PB} = \frac{3}{4}$ $y = \frac{3}{4}x + c$ OR/OF $y - y_1 = \frac{3}{4}(x - x_1)$ $0 = \frac{3}{4}(8) + c$ $y - 0 = \frac{3}{4}(x - 8)$ $y = \frac{3}{4}x - 6$ $y = \frac{3}{4}x - 6$ 3.5 $y_K = y_M + r = 4 + 5$ $y = 9$ 3.6 At/By L: $\frac{3}{4}x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ (tangent \perp radius/ $rkl \perp radius$) $m_{MB} \times m_{PB} = -1$ $m_{MB} \times m_{P$			
$m_{PB} = \frac{3}{4}$ $y = \frac{3}{4}x + c$ $0 = \frac{3}{4}(8) + c$ $y = \frac{3}{4}x - 6$ $y = \frac{3}{4}x - 6$ $y = \frac{3}{4}x - 6$ $y = \frac{3}{4}x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ $m_{MB} \times m_{PB} = -1$ $y = \frac{3}{4}(x - x_1)$ $y = 0$ $y = \frac{3}{4}(x - x_1)$ $y = 0$ $y = \frac{3}{4}(x - x_1)$ $y = \frac{3}{4}(x -$	342	$m \times m = -1$ (tangent radius/rkl / radius)	√ (<u>-</u>)
			$m_{MD} \times m_{DD} = -1$
$y = \frac{3}{4}x + c \qquad OR/OF y - y_1 = \frac{3}{4}(x - x_1)$ $0 = \frac{3}{4}(8) + c \qquad y - 0 = \frac{3}{4}(x - 8)$ $y = \frac{3}{4}x - 6 \qquad y = \frac{3}{4}x - 6$ $y = \frac{3}{4}x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ (2)		$m_{\rm PB} = \frac{3}{4}$	3
$0 = \frac{3}{4} (8) + c \qquad y - 0 = \frac{3}{4} (x - 8)$ $y = \frac{3}{4} x - 6 \qquad y = \frac{3}{4} x - 6$ $3.5 \qquad y_K = y_M + r = 4 + 5$ $y = 9 \qquad \checkmark \text{ equation/vgl}$ $3.6 \qquad \text{At/By L:}$ $\frac{3}{4} x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ (2)		7	$\sim m_{\rm PB} = \frac{1}{4}$
3.5 $y_K = y_M + r = 4 + 5$ $y = 9$ 3.6At/By L: $\frac{3}{4}x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ (3) $\checkmark \text{ equation/vg/}$ $\checkmark \text{ equation/vg/}$ $\checkmark \text{ equating simultaneously }$ $\checkmark \text{ implification}$		$y = \frac{3}{4}x + c$ OR/OF $y - y_1 = \frac{3}{4}(x - x_1)$	
3.5 $y_K = y_M + r = 4 + 5$ $y = 9$ 3.6At/By L: $\frac{3}{4}x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ (3) $\checkmark \text{ equation/vg/}$ $\checkmark \text{ equation/vg/}$ $\checkmark \text{ equating simultaneously }$ $\checkmark \text{ implification}$		$0 = \frac{3}{4} (8) + c y - 0 = \frac{3}{4} (x - 8)$	
3.5 $y_K = y_M + r = 4 + 5$ $y = 9$ 3.6At/By L: $\frac{3}{4}x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ (3) $\checkmark \text{ equation/vg/}$ $\checkmark \text{ equation/vg/}$ $\checkmark \text{ equating simultaneously }$ $\checkmark \text{ implification}$		$y = \frac{3}{2}y = 6$ $y = \frac{3}{2}y = 6$	
3.5 $y_K = y_M + r = 4 + 5$ $y = 9$ 3.6At/By L: $\frac{3}{4}x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ (3) $\checkmark \text{ equation/vgl}$ $\checkmark \text{ equating simultaneously}$ $\checkmark \text{ simplification}$		$y - \frac{1}{4}x - 0$ $y - \frac{1}{4}x - 0$	✓ equation/vgl
3.5 $y_K = y_M + r = 4 + 5$ $y = 9$ 3.6 At/By L: $\frac{3}{4}x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ $x = 20$ $x = 3$ $x = 4$ $x =$			
$y = 9$ $\sqrt{\text{equation/}vgl}$ 3.6 At/By L: $\frac{3}{4}x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ $\sqrt{\text{equation/}vgl}$ $\sqrt{\text{equation}}$ $\sqrt{\text{equating simultaneously}}$ $\sqrt{\text{simplification}}$	3.5	$y_K = y_M + r = 4 + 5$	
3.6 At/By L: $\frac{3}{4}x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ \Rightarrow equating simultaneously simplification		y = 9	√ equation/vgl
$\frac{3}{4}x - 6 = 9$ $3x - 24 = 36$ $3x = 60$ $x = 20$ $x = 20$ $\sqrt{\text{equating simultaneously simplification}}$			(2)
3x - 24 = 36 $3x = 60$ $x = 20$ simultaneously simplification	3.6		
3x - 24 = 36 $3x = 60$ $x = 20$ simultaneously simplification		$\frac{3}{4}x - 6 = 9$	✓ equating
3x = 60 $x = 20$		3x - 24 = 36	simultaneously
(2)			✓ simplification
∴ L(20;9) (2)		x = 20	
		∴ L(20; 9)	(2)

3.7	L(20; 9) $ML = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} OR/OF ML = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(20 - 5)^2 + (9 - 4)^2} = \sqrt{(15)^2 + (5)^2}$ $= \sqrt{225 + 25} = \sqrt{(5)^2 (9 + 1)}$ $= \sqrt{250} or/of 5\sqrt{10}$ $= \sqrt{250} or/of 5\sqrt{10}$	✓ correct subst into distance formula/ korrekte subst in afstand- formule ✓ answer in surd form/antw in wortelvorm
3.8	MK ⊥ KL OR/OF MKL = 90° (radius ⊥ tangent/radius ⊥ rkl) ∴ ML is a diameter as it subtends a right angle/ML is middellyn $r = \frac{ML}{2} = \frac{\sqrt{250}}{2} = \sqrt{\frac{125}{2}} \text{or} 7,91$ Centre of circle = midpoint of ML/Midpt van sirkel = midpt v ML $x = \frac{5+20}{2} = \frac{25}{2} = 12,5 \qquad y = \frac{4+9}{2} = \frac{13}{2} = 6,5$ Centre/midpt: (12,5; 6,5) Equation of the circle KLM /Vgl van sirkel KLM: $∴ (x-12,5)^2 + (y-6,5)^2 = \frac{250}{4} = \frac{125}{2} = 62,5$	✓ S ✓ value of/waarde van r ✓ x = 12,5 ✓ y = 6,5 ✓ answer in correct form/ antw in korrekte vorm
	OR/OF	(5)
	MK ⊥ KL OR/OF MKL = 90° (radius ⊥ tangent/radius ⊥ rkl) ∴ ML is a diameter as it subtends a right angle/ML is middellyn Centre of circle = midpoint of ML/Midpt van sirkel = midpt v ML $x = \frac{5+20}{2} = \frac{25}{2} = 12.5 \qquad y = \frac{4+9}{2} = \frac{13}{2} = 6.5$ Centre/midpt: (12.5; 6.5) Equation of the circle KLM /Vgl van sirkel KLM:	$\checkmark S$ $\checkmark x = 12,5$ $\checkmark y = 6,5$
	$(x-12,5)^{2} + (y-6,5)^{2} = r^{2}$ subst (5; 4): $(5-12,5)^{2} + (4-6,5)^{2} = r^{2}$ $62,5 = r^{2}$ $\therefore (x-12,5)^{2} + (y-6,5)^{2} = \frac{250}{4} = \frac{125}{2} = 62,5$	✓ value of/waarde van r² ✓ answer in correct
	OR/OF	form/antw in korrekte vorm (5)

By symmetry about LM/deur simmetrie om LM: MK ⊥ KL OR/OF MKL = 90° (radius ⊥ tangent/radius ⊥ rkl) ∴ML is a diameter as it subtends a right angle/ML is middellyn	√ S
ML is a diameter /ML is 'n middellyn $r = \frac{ML}{2} = \frac{\sqrt{250}}{2} = \sqrt{\frac{125}{2}} \text{or /of } 7,91$ Centre of circle = midpoint of ML/Midpt van sirkel = midpt v ML $x = \frac{5+20}{2} = \frac{25}{2} = 12,5 \qquad y = \frac{4+9}{2} = \frac{13}{2} = 6,5$ Centre/midpt: (12,5; 6,5) Equation of the circle KLM /Vgl van sirkel KLM: $\therefore (x-12,5)^2 + (y-6,5)^2 = \frac{250}{4} = \frac{125}{2} = 62,5$	<pre> ✓ value of/waarde van r ✓ x = 12,5 ✓ y = 6,5 ✓ answer in correct form/antw in korrekte vorm (5)</pre>

Question 4 November 2014

4.1	y = 0: $3x + 8 = 0$	✓ y-value/waarde
	$x = -\frac{8}{3}$	✓ x-value/waarde
	$\therefore E\left(-2\frac{2}{3};0\right) \mathbf{OR}/\mathbf{OF} \ E\left(-\frac{8}{3};0\right)$	(2)
4.2	$\tan D\hat{E}O = m_{DE} = 3$	√ tan DÊO = 3
	∴ DÊO = 71,565 = 71,57° DÂE = 71,565 ° - 45°	✓ 71,565°
	= 26,57°	✓ 26,57° (3)
4.3	$m_{AB} = \tan 26,57^{\circ}$	$\sqrt{m_{AB}} = \tan 26,57^{\circ}$
	$=\frac{1}{2}$	$\checkmark m_{AB} = \frac{1}{2}$
	$y = \frac{1}{2}x + c \mathbf{OR/OF} \qquad y - y_1 = \frac{1}{2}(x - x_1)$ $5 = \frac{1}{2}(1) + c \qquad y - 5 = \frac{1}{2}(x - 1)$ $y = \frac{1}{2}x + 4\frac{1}{2} \qquad y = \frac{1}{2}x + \frac{9}{2}$	✓ subst of m and (1;5)into formula/ subst m en (1;5) in formule ✓ equation/vgl
	$y = \overline{2}^x \cdot \overline{2}$ $y = \overline{2}^x \cdot \overline{2}$	(4)

4.4	Solve $x - 2y + 9 = 0$ and $y = 3x + 8$ simultaneously:
	3/3 .0\ . 0 .0

$$\begin{array}{l}
 x - 2(3x+8) + 9 = 0 \\
 x - 6x - 16 + 9 = 0 \\
 - 5x = 7
 \end{array}$$

$$x = -1\frac{2}{5}$$

$$y = 3(-1\frac{2}{5}) + 8$$

$$y = 3(-1\frac{2}{5}) + 8 \quad \mathbf{OR}/\mathbf{OF} \quad -1\frac{2}{5} - 2y + 9 = 0$$

$$y = 3\frac{4}{5}$$
 $y = 3\frac{4}{5}$

$$\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$$

√ subst/vervang

√ x-value/waarde

√ subst/vervang

√ y-value/waarde

(4)

OR/OF

$$x = 2y - 9$$

$$y = 3(2y - 9) + 8$$

$$\therefore y = 3\frac{4}{5}$$

$$x = 2(3\frac{4}{5}) - 9$$
 OR/OF $3\frac{4}{5} = 3x + 8$

$$3\frac{4}{5} = 3x + 8$$

$$x = -1\frac{2}{5}$$

√ equating/gelyk stel

OR/OF

$$3x + 8 = \frac{1}{2}x + 4\frac{1}{2}$$

 $D(-1\frac{2}{5}; 3\frac{4}{5})$

$$6x + 16 = x + 9$$

$$\therefore \quad x = -1\frac{2}{5}$$

$$y = 3(-1\frac{2}{5}) + 8$$

$$y = 3\frac{4}{5}$$

$$D(-1\frac{2}{5}; 3\frac{4}{5})$$

$$x + 16 = x + 9$$

 $5x = -7$
 $x = -1\frac{2}{}$

$$y = 3(-1\frac{2}{5}) + 8$$
 OR/OF $y = \frac{1}{2}(-1\frac{2}{5}) + 4\frac{1}{2}$

$$y = 3\frac{4}{5}$$

$$D(-1\frac{2}{5}; 3\frac{4}{5})$$

VOF
$$y = \frac{1}{2}(-1\frac{2}{5}) + 4\frac{1}{5}$$

$$y = 3\frac{4}{5}$$

$$y = 3\frac{4}{5}$$

√ x value/waarde

√ subst/vervang

(4)

(4)

OR/OF

Analytical Geometry Memo	
$x - 2y = -9 \dots (1)$ $-6x + 2y = 16 \dots (2)$ $(1) + (2):$ $-5x = 7$ $\therefore x = -1\frac{2}{5}$ $\therefore -1\frac{2}{5} - 2y = -9 \qquad \mathbf{OR/OF} y = 3(-1\frac{2}{5}) + 8$ $y = 3\frac{4}{5} \qquad \qquad y = 3\frac{4}{5}$	✓ adding/optelling ✓ x-value/waarde ✓ subst/vervang
$\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$	✓ y-value/waarde
OR/OF y = 3x + 8(1) 6y = 3x + 27(2)	(4)
	✓ subtracting/aftrekking ✓ y-value/waarde
$3\frac{4}{5} = 3x + 8 \qquad x = 2(3\frac{4}{5}) - 9$ $x = -1\frac{2}{5} \qquad x = -1\frac{2}{5}$ $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$	✓ subst/vervang ✓ x-value/waarde (4)
4.5 area DMOE = area \triangle AMO - area \triangle ADE $x_A = 2(0) - 9$ \therefore A(-9; 0) area \triangle AMO area \triangle ADE	✓ correct method/ korrekte metode ✓ x _A = -9
$=\frac{1}{2}$. AO. OM $=\frac{1}{2}$. AE. y_{D}	1,0041

area
$$\triangle AMO$$
 area $\triangle ADE$
= $\frac{1}{2}$. AO. OM = $\frac{1}{2}$. AE. y_D
= $\frac{1}{2}$. (AO – EO). y_D
= $20,25$ = $\frac{1}{2}$. (AO – EO). y_D
= $12,03$

area
$$\triangle ADE$$

= $\frac{1}{2}AD.AE.sin DÂE$
= $\frac{1}{2}(\frac{19\sqrt{5}}{5}).6\frac{1}{3}.sin 26,57^{\circ}$
= $12,03$

∴ area DMOE = 8,22 square units/vk eenh

OR/OF

$$\sqrt{\frac{1}{2}}(9)(4\frac{1}{2})$$
 $\sqrt{AE} = 9 - 2\frac{2}{3} = 6\frac{1}{3}$
 $\sqrt{y_D} = 3\frac{4}{5}$

OR/OF

$$\checkmark AD = \frac{19\sqrt{5}}{5}$$

$$\checkmark AE = 6\frac{1}{3}$$

answer/antw

area DMOE = area rectangle DCOG + area Δ DMG + area Δ DEC
$= (1\frac{2}{5} \times 3\frac{4}{5}) + \frac{1}{2} \left(1\frac{2}{5}\right) \left(\frac{7}{10}\right) + \frac{1}{2} \left(3\frac{4}{5}\right) \left(\frac{19}{15}\right)$
5 5 2(5)10 2 515
= 8,22 square units/vk eenh

correct method/
korrekte metode
$$\sqrt{3} \frac{4}{5}$$

$$\sqrt{1} \frac{2}{5} \sqrt{0,7}$$

$$\sqrt{\frac{19}{15}}$$
answer
$$(6)$$

OR/OF

area DMOE = area
$$\triangle$$
EDO + area \triangle ODM
= $\frac{1}{2}$ (EO × y_D) + $\frac{1}{2}$ (OM × - x_D)
= $\frac{1}{2}$ [$\left(\frac{8}{3} \times \frac{19}{5}\right)$ + $\left(\frac{9}{2} \times \frac{7}{5}\right)$]
= $\frac{1}{2}$ ($\frac{304 + 189}{30}$)
= $\frac{493}{60}$ or/of $8\frac{13}{60}$ or/of 8,22 square units/vk eenh

√ correct method/

$$\sqrt{y_D} = \frac{19}{5} \text{ or } 3\frac{4}{5}$$

$$\sqrt{EO} = \frac{8}{3}$$

$$\sqrt{-x_D} = \frac{7}{5}$$

$$\sqrt{OM} = \frac{9}{2} \text{ or } 4\frac{1}{2}$$

OR/OF

area DMOE = area
$$\triangle$$
EOF - area \triangle DMF
= $\frac{1}{2}$ (EO × OF) - $\frac{1}{2}$ (OF - OM)(- x_D)
= $\frac{1}{2}$ [$\left(\frac{8}{3} \times 8\right)$ + $\left(\frac{7}{2} \times \frac{7}{5}\right)$]
= $\frac{1}{2}$ $\left(\frac{640 - 147}{30}\right)$
= $\frac{493}{60}$ or $8\frac{13}{60}$ or 8,22 square units/vk eenh

$$✓ EO = \frac{8}{3}$$

$$✓ -x_D = \frac{7}{5}$$

$$✓ FM = 3\frac{1}{2}$$

$$✓ answer/antw$$

OR/OF

area ΔΕΟΜ =
$$\frac{1}{2}$$
(EO × OM)
= $\frac{1}{2} \left(\frac{8}{3} \times \frac{9}{2}\right)$
= 6 sq units/vk eenh
ED = $\sqrt{\left(-\frac{7}{5} + \frac{8}{3}\right)^2 + \left(\frac{19}{5}\right)^2}$ and DM = $\sqrt{\left(\frac{7}{5}\right)^2 + \left(\frac{9}{2} - \frac{19}{5}\right)^2}$
= $\frac{19\sqrt{10}}{15}$ or 4,005... = $\frac{7\sqrt{5}}{10}$ or 1,565..
area ΔΕDM = $\frac{1}{2}$ (ED × DM × sin EDM)
= $\frac{1}{2} \left(\frac{19\sqrt{10}}{15}\right) \left(\frac{7\sqrt{5}}{10}\right)$ sin 135°
= $\frac{133}{60}$ or 2,216... \checkmark area ΔΕDM \checkmark correct method/korrekte metode
= 6 + 2,216... \checkmark area ΔΕDM \checkmark correct method/korrekte metode \checkmark answer/antw

Question 3 Feb March 2015

3.1	$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(5+1)^2 + (13-5)^2}$ $= 10$	✓ use of distance formula/gebruik afstandformule ✓ correct subst into form/korrekte subst in formule ✓ 10 (3)
3.2	$m_{PQ} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{13 - 5}{5 - (-1)}$ $= \frac{8}{6} = \frac{4}{3}$ Answer only: Full marks slegs antw: volpunte	✓ correct subst into gradient formula/ korrekte subst in gradiëntformule ✓ gradient/gradiënt (2)

3.3	Equation of line RS/Vgl van lyn RS:		
	$m_{RS} = m_{PQ} = \frac{4}{3}$ (= gradients, lines/=gradiënte, lyne)	$\sqrt{m_{RS}} = \frac{4}{3}$	
	$y = mx + c y - y_1 = m(x - x_1)$ $8 = \frac{4}{3} \left(\frac{15}{2}\right) + c y - 8 = \frac{4}{3} \left(x - \frac{15}{2}\right)$ $c = -2 y = \frac{4}{3}x - 2$ $\therefore 4x - 3y - 6 = 0$ $OR/OF y = \frac{4}{3}x - 2$ $\therefore 4x - 3y - 6 = 0$	✓ subst of S(7,5; 8) and m into eq /subst van S(7,5; 8) en m in vgl ✓ value of c /waarde van c or/of st form/st vorm ✓ equation/vgl (4)	
3.4	B is the x-intercept of lis die x-afsnit van $y = \frac{4}{3}x - 2$		
	$0 = \frac{4}{3}x - 2 4x - 3(0) - 6 = 0 4x - 6 = 0$ OR/OF	✓ y = 0	
	$x = \frac{3}{2}$ $x = \frac{3}{2}$	$\checkmark x = \frac{3}{2} \tag{2}$	
3.5	$\tan \alpha = \frac{4}{3}$	$\checkmark \tan \alpha = \frac{4}{3}$	
	$\alpha = 53,13^{\circ} = OBR$ (vert opp $\angle s/regoorst \angle e$)	✓ 53,13°	
	ORB = $180^{\circ} - (90^{\circ} + 53,13^{\circ})$ ($\angle s \text{ of } \Delta l \angle e \text{ van } \Delta$) = $36,87^{\circ}$	✓ 36,87°	
3.6	BS = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
	$=\sqrt{\left(\frac{15}{2} - \frac{3}{2}\right)^2 + (8 - 0)^2}$	✓ correct subst into form/korrekte subst in formule	
	=10 PQ BS and/en PQ = BS	✓ BS = 10 ✓ BS = PQ	
	PQBS = parallelogram (1 pair opp sides = and /1 pr tos sye =en)	✓ reason/rede (4)	
	midpoint of lmidpt van QS: $\left(\frac{-1+7.5}{2}; \frac{5+8}{2}\right) = \left(\frac{13}{4}; \frac{13}{2}\right)$	$\checkmark\left(\frac{-1+7.5}{2}; \frac{5+8}{2}\right)$	
	midpoint of/midpt van PB: $\left(\frac{5+1.5}{2}; \frac{13+0}{2}\right) = \left(\frac{13}{4}; \frac{13}{2}\right)$	$\checkmark\left(\frac{5+1.5}{2};\frac{13+0}{2}\right)$	
	PQBS = parallelogram (diags bisect each other/hoekl halv mekaar)	$\checkmark \left(\frac{13}{4}, \frac{13}{2}\right)$ $\checkmark \text{ reason/rede}$ (4)	
	OR/OF	(1)	

$$m_{QB} = \frac{5 - 0}{-1 - 1.5} = \frac{5}{-2.5} = -2$$

$$m_{PS} = \frac{13 - 8}{5 - 7.5} = \frac{5}{-2.5} = -2$$

$$m_{QB} = m_{PS}$$

$$\therefore QB || PS$$

$$PQ || BS$$

$$PQBS = parallelogram (both pairs opp sides ||/beide pr tos sye ||)$$

$$OR/OF$$

$$BS = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{\left(\frac{15}{2} - \frac{3}{2}\right)^2 + (8 - 0)^2} \quad \therefore PQ = BS$$

$$= 10$$

$$QB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-1 - 1.5)^2 + (5 - 0)^2} = \sqrt{(2.5)^2 + (5)^2} = \frac{5\sqrt{5}}{2} \text{ or } 5.59$$

$$PS = \sqrt{(5 - 7.5)^2 + (13 - 8)^2} = \sqrt{(2.5)^2 + (5)^2} = \frac{\sqrt{125}}{2} \text{ or } 5.59$$

$$QB = PS$$

$$PQBS = parallelogram (both pairs opp sides = | beide pr tos sye =)$$

$$(4)$$

Question 4 Feb March 2015

4.1.1	Radius = $\sqrt{(2+1)^2 + (4-2)^2}$	$\sqrt{(2+1)^2+(4-2)^2}$
	$r = \sqrt{13}$	or/ <i>of</i> √13
	Equation of circle/vgl van sirkel:	$\sqrt{(x-2)^2+(y-4)^2}$
	$(x-2)^2 + (y-4)^2 = 13$	√13
		(3)
	OR/OF	
	$(x-2)^2 + (y-4)^2 = r^2$	$\sqrt{(x-2)^2 + (y-4)^2}$ $\sqrt{(-1-2)^2 + (2-4)^2}$
	$(-1-2)^2 + (2-4)^2 = r^2$	$\sqrt{(-1-2)^2+(2-4)^2}$
	$r^2 = 13$	
	$\therefore (x-2)^2 + (y-4)^2 = 13$	√13
		(3)

4.1.2 At/by D:	
$\frac{-1+x_D}{2} = 2$ $\frac{2+y_D}{2} = 4$	
$-1+x_D=4$ and/en $2+y_D=8$ $x_D=5$ $y_D=6$	
$x_D = 5$ $y_D = 6$ D(5; 6)	✓ x – value/waarde ✓ y - value/waarde
	(2)
OR/OF	
By inspection/deur inspeksie: D(5; 6)	✓ x - value/waarde ✓ y - value/waarde
412	(2)
$m_{\text{MC}} = \frac{4-2}{2+1} = \frac{2}{3}$	$\sqrt{m_{\text{MC}}} = \frac{4-2}{2+1} = \frac{2}{3}$
$m_{AB} \times m_{MC} = -1$ (Tangent \perp radius/raaklyn \perp radius)	$\sqrt{m_{AB} \times m_{MC}} = -1$
$m_{AB} = -\frac{3}{2}$	$\checkmark m_{AB} = -\frac{3}{2}$
$y - y_1 = m(x - x_1)$ OR/OF $y = mx + c$	
$y-2=-\frac{3}{2}(x+1)$ $2=-\frac{3}{2}(-1)+c$	\checkmark subst m and (-1; 2)
$y = -\frac{3}{2}x + \frac{1}{2}$ $y = -\frac{3}{2}x + \frac{1}{2}$	into eq/subst m en (-1 ; 2) in vgl
$y = -\frac{3}{2}x + \frac{1}{2}$ $y = -\frac{3}{2}x + \frac{1}{2}$	✓ eq in standard form/
	vgl in st vorm
4.1.4 At/by E:	(5)
$(0-2)^2 + (y-4)^2 = 13$	✓ x = 0
$(y-4)^2 = 9$	✓ simplification/
$y - 4 = \pm 3$	vereenvoudiging
y = 7 or $y = 1$	✓ y - values/waardes
E(0;7)	✓ E(0;7)
	(4)
OR/OF	
At/by E:	
$(0-2)^2 + (y-4)^2 = 13$	✓ x = 0
$4 + y^2 - 8y + 16 = 13$	/ · · · · · · · · · /
$y^2 - 8y + 7 = 0$	✓ simplification/ vereenvoudiging
(y-7)(y-1)=0	
y = 7 or y = 1	√ y - values/waardes √ E(0; 7)
E(0;7)	(4)

4.1.5	$m_{\text{EM}} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{4 - 7}{2 - 0}$ $= -\frac{3}{2}$	$\sqrt{m_{\rm EM}} = -\frac{3}{2}$
	$m_{AB} = -\frac{3}{2}$ $\therefore EM \mid \mid AB \qquad (m_{EM} = m_{AB})$	✓ reason/rede (2)
4.2	The centres of the circles are / Die middelpunte van die sirkels is P(-2; 4) and / en Q(5; -1)	✓ both centres/albei Midpte ✓ QP
	$QP^2 = (-2-5)^2 + (4-(-1))^2$ $QP = \sqrt{74} \approx 8,60 \text{ units}$	✓ correct subst into form/korrekte subst in formule ✓ distance between 2 centres/afstand
	$r_{M} + r_{P} = 5 + 3$ $= 8$ $\therefore r_{M} + r_{P} < QP$	tussen 2 midpte
	∴ The two circles do not intersect/Die twee sirkels sny nie	(6) [22]

Question 3 November 2015

3.1	$m_{PQ} = \tan 45^{\circ}$		$\sqrt{m} = \tan 45^{\circ}$
	= 1		✓ answ/antw (2)
3.2	$MN \mid\mid QP$ $\therefore m_{MN} = 1$ $\therefore y - y_1 = m(x - x_1)$ $\therefore y - 1 = 1(x - 7)$ $\therefore y - x - 6$	[midpt theorem/midpt-stelling]	✓ S OR R ✓ m _{MN} ✓ subst m and/en N(7; 1) ✓ equation/vg/ (4)
	OR/OF		
	MN PQ $\therefore m_{MN} = 1$ $\therefore y = mx + c$ $\therefore 1 = 1(7) + c$	[midpt theorem/midpt-stelling]	✓ S OR R ✓ m _{MN} ✓ subst m and/en N(7; 1)
	$ \begin{array}{ll} -6 = c \\ \therefore & y = x - 6 \end{array} $		✓ equation/vgl (4)
3.3	$MN = \frac{1}{2}PQ$	[midpoint theorem/midp stelling]	√S
	$\therefore MN = \frac{7\sqrt{2}}{2} \approx 4.95$	5	✓ answ/antw (2)

3.5	QN = NS [diag of m/hoekl van m]	
3.3	$\frac{-2 + x_s}{2} = 7 \text{and/en} \frac{-3 + y_s}{2} = 1$ $\therefore x_s = 16 \therefore y_s = 5$	✓ method/metode ✓ x-value/waarde ✓ y-value/waarde (3)
	OR/OF QN = NS [diag of m/hoekl van m] ∴ by inspection/deur inspeksie: S(16; 5)	✓ method/metode ✓ x-value/waarde ✓ y-value/waarde (3)
3.6	Equation of $Vgl\ van\ PQ$: $y = x + c$	(5)
	$-3 = -2 + c$ $y = x - 1 \qquad \therefore a = b + 1 \qquad \dots (1)$ From distance formula/Van afstandsformule: $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	✓ eq of/vgl van PQ
	$7\sqrt{2} = \sqrt{(a - (-2))^2 + (b - (-3))^2}$ $\therefore 98 = (a + 2)^2 + (b + 3)^2 \qquad \dots (2)$ Subst (1) into (2): $98 = (b + 1 + 2)^2 + (b + 3)^2$	✓ subst Q & 7√2 into/in distance formula/ afstandsformule
	$98 = b^{2} + 6b + 9 + b^{2} + 6b + 9$ $0 = 2b^{2} + 12b - 80$	✓ subst eq of/vgl v. PQ
	$0 = b^2 + 6b - 40$ 0 = (b + 10)(b - 4)	✓ st form/st vorm
	$\therefore b = 4 (\text{since } b > 0)$ Subst $b = 4$ into (1): $\therefore a = 4 + 1 = 5$ $\therefore P(5; 4)$	✓ value of/waarde van b ✓ value of/waarde van a
	OR/OF	(6)
	Equation of/Vgl van PQ: $y = x + c$ -3 = -2 + c y = x - 1 .: $a = b + 1$ (1)	✓ eq of/vgl van PQ
	From distance formula/Van afstandsformule: $7\sqrt{2} = \sqrt{(a - (-2))^2 + (b - (-3))^2}$ $\therefore 98 = (a + 2)^2 + (b + 3)^2$ (2)	✓ subst Q & 7√2 into/in distance formula/
	Subst (1) into (2): $98 = (b+1+2)^2 + (b+3)^2$	afstandsformule ✓ subst eq of/vgl v. PQ
	$98 = 2(b+3)^2$ $49 = (b+3)^2$	✓ simplification/ vereenvoudig
	$\pm 7 = b + 3$	✓ value of/waarde
	$\pm 7 - 3 = b$	van b
	∴ b = 4 (since b > 0) Subst b = 4 into (1):	✓ value of/waarde van a
	$\therefore a = 4 + 1 = 5$	(6)
	∴ P(5; 4)	

OR/OF

Equation of Vg/ van PQ: y = x + c-3 = -2 + c

$$y = x - 1$$
 .: $a = b + 1$ (1)

From distance formula/Van afstandsformule:

$$7\sqrt{2} = \sqrt{(a - (-2))^2 + (b - (-3))^2}$$

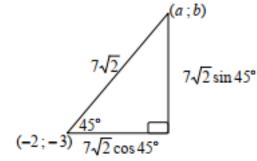
$$98 = (a+2)^2 + (a-1+3)^2$$

$$= 2(a+2)^2$$

 $\therefore a + 2 = 7 \quad (\text{since}/\text{aangesien } a > 0)$

$$\therefore a = 5$$

Subst a = 4 into (1):


$$b = 5 - 1 = 4$$

.: P(5;4)

- ✓ eq of/vgl van PQ
- √ subst Q & 7√2
 into/in distance
 formula/
 afstandsformule
- √ subst eq of/vgl v.
 PQ
- √ simplification/ vereenvoudig
- ✓ value of/waarde van a
- √ value of/waarde
 van b

(6)

OR/OF

$$a = -2 + 7\sqrt{2}\cos 45^\circ = 5$$

 $b = -3 + 7\sqrt{2}\sin 45^\circ = 4$

////

✓

(6) [17]

Question 4 November 2015

4.1	$(x-5)^{2} + (y-2)^{2} = r^{2}$ $(0-5)^{2} + (6-2)^{2} = r^{2}$ $25+16=r^{2}$ $41=r^{2}$ $(x-5)^{2} + (y-2)^{2} = 41$	✓ subst (5; 2) into circle eq/in sirkelvgl ✓ value of/waarde van r² ✓ equation/vgl (3)
	OR/OF PQ = $\sqrt{(0-5)^2 + (6-2)^2}$ = $\sqrt{25+16}$ $r = \sqrt{41}$ $\therefore (x-5)^2 + (y-2)^2 = 41$	✓ subst (5; 2) & (0; 6) into dist. form/in afst. form ✓ value of/waarde van r ✓ equation/vgl (3)

4.2	$(0-5)^2 + (y-2)^2 = 41$	✓ x = 0
	$25 + (y - 2)^2 = 41$	
	$25 + y^2 - 4y + 4 = 41$	
	$y^2 - 4y - 12 = 0$	✓ st form/st. vorm
	(y-6)(y+2)=0	
	$y \neq 6$ or of $y = -2$	✓ answ/antw
	$\therefore S(0; -2) \text{ or } y = -2$	(neg value)
]		(3)
	OR/OF	
	$(0-5)^2 + (y-2)^2 = 41$	
	$25 + (y - 2)^2 = 41$	✓ x = 0
	* '	
	$(y-2)^2 = 16$	✓ square form/ kwadraatvorm
	$y-2=\pm 4$	Kwaaraaivorm
	$y = 2 \pm 4$	
	$y \neq 6 \text{or/of} y = -2$	
	∴ S(0; -2)	✓ answ/antw (neg value)
		(neg value)
	OR/OF	(3)
	Draw/Trial: OT PS P(0; 6)	
	PT = TS [line from centre to chord/	
	lyn van midpt ⊥ koord] 4 —	
	$PT = y_P - y_O = 6 - 2 = 4$ $T - Q(5; 2)$	
	$y_0 - y_s = 4$ 4	
	$y_s = 2 - 4 = -2$	
	∴ S(0; -2)	
		$\checkmark x = 0$ $\checkmark \checkmark y = -2$
		(3)
4.3	6-2	✓ subst (0; 6) &
	$m_{PQ} = \frac{6-2}{0-5}$	(5; 2) into grad
	= _4	form/in grad. formule
	<u>5</u>	√ m _{PQ}
	$m_{PQ} \times m_{APB} = -1$ [tan/raakl \(\pm\) radius]	
	$m_{ABB} = \frac{5}{2}$	✓ m _{APB}
	$\therefore m_{APB} = \frac{5}{4}$ $\therefore y = \frac{5}{4}x + 6$	✓ equation/vgl
	4	(4)

4.4	$\tan \alpha = \frac{5}{4}$	$\checkmark \tan \alpha = m_{APB}$
	$\alpha = 51,34^{\circ}$	✓ answ/antw
	OR/OF	(2)
	D(4 9 · 0)	
	B(4,8;0)	. 6
	$\therefore \tan \alpha = \frac{6}{4.8}$	$\checkmark \tan \alpha - \frac{6}{4.8}$
	$\therefore \alpha = 51,34^{\circ}$	✓ answ/antw (2)
4.5	$\theta = B\hat{P}S$ [tan-chord th/raakl-koordst.]	✓ S ✓ R
	= $90^{\circ} - \alpha$ [\angle sum in $\Delta I \angle$ som van Δ]	√90°-α
	= 90° - 51,34° = 38,66°	✓ answ/antw
	OR/OF	(4)
	$PS = 8$ $PQ = SQ = \sqrt{41}$	
	$PS^{2} = PQ^{2} + SQ^{2} - 2.PQ.SQ.cosPQS$	✓ correct subst into
	$64 = 41 + 41 - 2.41.\cos PQS$	cosine rule
	$\cos P\hat{Q}S = \frac{18}{82}$	
	. 02	✓ PQS = 77,32°
	PQS = 77,32°	✓ R
	$\theta = \frac{1}{2} P\hat{Q}S$ [\angle at centre = 2 × \angle circumf]	✓ answ/antw (4)
	= 38,66°	
4.6	Area $\triangle PQS = \frac{1}{2}PS \times height/hoogte$	✓ area formula/e:
	2	ΔPQS ✓ PS = 8
	$=\frac{1}{2}(8)(5)$	$\sqrt{h} = 5$
	= 20 sq units/vk eenh	✓ answ/antw
	OR/OF	(4)
	$PQS = 2 \times 38,66^{\circ}$ [\angle at centre = $2 \times \angle$ at circum/	d size off
	$midpts \angle = 2omtreks \angle$] = 77,32°	✓ size of/grootte v PQS
	Area $\triangle PQS = \frac{1}{2}PQ.QS.\sin PQS$	√ area rule/reël:
		ΔPQS ✓ subst correctly/
	$= \frac{1}{2}.\sqrt{41}.\sqrt{41}.\sin 77,32^{\circ}$	subst korrek
	= 20 sa unitabile acul	✓ answ/antw (4)
	= 20 sq units/vk eenh	[20]

Question 3 Feb March 2016

3.1	$m_{PQ} = \frac{1 - (-2)}{1 - 0} = 3$	✓ subst (1; 1) & (0; -2) ✓ answ/antw (2)
3.2	QR: $y = -\frac{1}{3}x - 2$	/··· 1
	$\therefore m_{QR} = -\frac{1}{3}$	$\sqrt{m_{QR}} = -\frac{1}{3}$
	$m_{PQ} \times m_{QR} = 3 \times -\frac{1}{3}$	$\checkmark m_{PQ} \times m_{QR} = -1$
2.2	$\therefore PQ \perp QR \qquad \therefore P\hat{Q}R = 90^{\circ}$	(2)
3.3	$-\frac{1}{3}x - 2 = -x + 2$	√equating/gelyk stel
	$\frac{2}{3}x = 4$	
	$x = 6$ $y = -4$ $\therefore R(6; -4)$	✓x-value/waarde ✓y-value/waarde (3)
3.4	$PR = \sqrt{(1-6)^2 + (1-(-4))^2}$	✓ subst into/in distance formula/
	$=\sqrt{50}=5\sqrt{2}$	afstandsformule
	OR/OF	✓ answ/antw in surd form/ wortelvorm
	$PR^{2} = (1-6)^{2} + (1-(-4))^{2}$ $= 50$	(2) ✓ subst into/in distance formula/
		afstandsformule
	$\therefore PR = \sqrt{50} = 5\sqrt{2}$	✓ answlantw in surd form/ wortelvorm
3.5	PR is a diameter/'n middellyn [chord subtends/kd onderspan 90°]	(2) ✓√S
0.5	Centre of circle/Midpt v sirkel: $\left(\frac{1+6}{2}; \frac{1-4}{2}\right)$	
	$=\left(3\frac{1}{2};-1\frac{1}{2}\right)$	$\checkmark \checkmark \left(3\frac{1}{2}; -1\frac{1}{2}\right)$
	$r = \frac{\sqrt{50}}{2}$ OR $\frac{5\sqrt{2}}{2}$ OR 3,54	√r-value/waarde
	$\left(x - \frac{7}{2}\right)^2 + \left(y + \frac{3}{2}\right)^2 = \frac{50}{4} \text{ OR } \frac{25}{2} \text{ OR } 12,5$	√answ/antw (6)

	OR/OF	
	= 26,57°	✓answ/antw (5)
	$\theta = 180^{\circ} - (135^{\circ} + 18,43^{\circ})$ [sum of \angle s in \triangle /som $v \angle e$ in \triangle]	
	$\therefore N\hat{S}R = 18,43^{\circ}$	✓ NŜR = 18,43°
	$tan N\hat{S}R = m_{RS} = -\frac{1}{3}$	$\checkmark \tan N \hat{S} R = -\frac{1}{3}$
	$tan PN1 = m_{PR} = -1$ $\therefore S\hat{N}R = 135^{\circ}$	✓ SÑR = 135°
	$\tan P\hat{N}T = m_{PR} = -1$	✓ tan PÑT = -1
	Extrapolation of RQ to S/Verlenging van RQ na S:	
	OR/OF	
	$\therefore \theta = 26,57^{\circ} \qquad [\text{sum of } \angle \text{s in } \Delta \text{/som } v \angle e \text{ in } \Delta]$	✓ answ/antw (5)
	$\hat{P} = 63,43^{\circ}$ [ext \angle of $\triangle/buite \angle v \triangle$]	✓ P = 63,43°
	∴ PMT = 71,57°	✓ PMT = 71,57°
	$\tan PMT = m_{PQ} = 3$	
3.7	$tan PNT = m_{PR} = -1$ $\therefore PNT = 135^{\circ}$	✓ tan PÑT = -1 ✓ PÑT = 135°
2.7		(3)
	y = x $y = x$	lyn ✓answlantw
	y-1=x-1 OR/OF $1=1+c$	eq of line/vgl v
	$y - y_1 = (x - x_1) \qquad \qquad y = x + c$	✓ subst m & P(1; 1) into/in
	∴m of/van tangent/raaklyn = 1 Equation of tangent/Vgl van raaklyn:	• m of tang/rki
3.6	m of/van radius = -1	√m of tang/rkl

$PQ^2 = 1^2 + 3^2 = 10$	
$PQ = \sqrt{10}$	
$\therefore \sin \theta = \frac{PQ}{PR} = \frac{\sqrt{10}}{\sqrt{50}} = \frac{1}{\sqrt{5}}$ $\therefore \theta = 26,57^{\circ}$	-

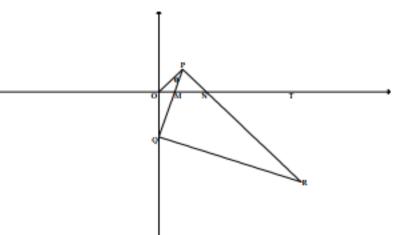
OR/OF

$$QR^{2} = 6^{2} + 2^{2} = 40$$

$$QR = 2\sqrt{10}$$

$$\therefore \cos \theta = \frac{2\sqrt{10}}{\sqrt{50}} = \frac{2}{\sqrt{5}}$$

$$\therefore \theta = 26,57^{\circ}$$


$$\tan \theta = \frac{m_{\text{RQ}} - m_{\text{PR}}}{1 + m_{\text{RQ}} \cdot m_{\text{PR}}}$$

$$= \frac{-\frac{1}{3} - (-1)}{1 + (-\frac{1}{3})(-1)}$$

$$= \frac{1}{2}$$

$$\therefore \theta = 26.57^{\circ}$$

tangent OP goes through the origin/raakl OP gaan deur oorsprong $P\hat{O}M = 45^{\circ}$

$$\hat{OPM} = \theta = \hat{P}$$
 [tan-chord theorem/raakl-kdst]
 $tan \hat{PMT} = m_{PQ} = 3$

∴
$$\theta$$
 + 45° = 71,57° [ext \angle of \triangle /buite- \angle v \triangle]

√distance/afst PQ

- ✓ correct trig ratio/ korrekte trig vh
- ✓ correct trig eq/ korrekte trig vgl
- √answ/antw

(5)

- ✓ subst into/in distance formula/ afstandsformule
- √distance/afst PQ
- √ correct trig ratio/ korrekte trig vh
- ✓ correct trig eq/ korrekte trig vgl
- √ answ/antw

(5)

- ✓ correct formula/ korrekte formule
- $\sqrt{m_{RO}} = -\frac{1}{3}$
- ✓correct subst/ subst korrek
- $\sqrt{\tan \theta} = \frac{1}{2}$
- $\sqrt{\theta} = 26.57^{\circ}$

(5)

✓ PÔM = 45° √R

✓ PMT = 71,57°

 $\sqrt{\theta} = 26.57^{\circ}$

(5)[23]

Question 4 Feb March 2016

4.1	OR ⊥ TR [radius ⊥ tangent/raakl]	√S/R
	$m_{TR} \times m_{OR} = -1$	
	∴ m _{or} = -2	√m of/van OR
	$\therefore y = -2x$	✓equation/vgl
4.2		(3)
4.2	$x^2 + (-2x)^2 = 20$	✓ subst eq of OR into circle eq/
	$x^2 + 4x^2 = 20$	subst vgl OR in
	$5x^2 - 20 = 0$	sirkelvgl
	$x^2 - 4 = 0$	✓st. form/st. vorm
	(x+2)(x-2) = 0	√x-value/waarde
	$\therefore x = 2$	* x-value/waarae
	y = -2(2) = -4 $\therefore R(2:-4)$	✓y-value/waarde
4.3	Subst R(2; -4) into the equation of lin vgl van PRS:	///
	$-4 = \frac{1}{2}(2) + k$	✓ correct subst/ korrekte subst
	k = -5	
	∴ OT = 5	✓value of k
	$0 = \frac{1}{2}x - 5$	$\sqrt{y} = 0$
	x = 10	√x-intercept/afsnit
	∴ OS = 10	
	,	
	Area/Oppervlakte = $\frac{1}{2}$ OS . OT	✓correct subst
	1 (10)(5)	into area form/
	$=\frac{1}{2}(10)(5)$	subst korrek in
	= 25 sq units/vk eenh	opp-formule
		√answ/antw (6)
4.4	$0 = \frac{x_v + 2}{2}$ and/en $0 = \frac{y_v - 4}{2}$	(-)
	1 2 2	√x-value/waardeV
	∴ V(-2; 4) T(0; -5) from/van 4.3	√y-value/waardeV
	$VT = \sqrt{(-2-0)^2 + (4-(-5))^2}$	(author = 0 = -1 + 31
	I	✓ subst of points V and T into
	$=\sqrt{4+81}$	distance formula/
	= √85	subst punte V en
		T in afst-form √answlantw
		(4)
		[17]

Question 3

May June 2016

3.1	$m_{AD} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{0 - 6}{-2 + 8}$	✓substitution
2.2	$=\frac{-6}{6}=-1$	√-1 (2)
3.2	$m_{BC} = -1$ [BC AD] y = -x + c 10 = -8 + c c = 18	✓ gradient ✓ substitute m and (8; 10)
	$y = -x + 18$ OR/OF $m_{BC} = -1$ [BC AD]	✓ equation (3)
	$m_{BC} = -1$ [BC[[AD]] $y - y_1 = m(x - x_1)$ y - 10 = -(x - 8) y = -x + 18	✓ gradient ✓ substitute m and (8; 10) ✓ equation (3)
3.3	$m_{\text{BD}} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{10 - 0}{8 + 2} = 1$ $m_{\text{BD}} \times m_{\text{AD}} = 1 \times -1 = -1$ $\therefore \text{DB} \perp \text{AD}$ OR	✓ substitution ✓ answer ✓ $m_{BD} \times m_{AD} = -1$ (3)
2.4	AD ² = 72 or AD = $\sqrt{72}$ or $6\sqrt{2}$ AB ² = 272 or AB = $\sqrt{272}$ or $4\sqrt{17}$ BD ² = 200 or BD = $\sqrt{200}$ or $10\sqrt{2}$ \therefore AB ² = AD ² + BD ² \therefore ADB = 90° [converse Pyth th/ omgekeerde Pyth st]	✓ calculating all 3 sides ✓ $AB^2 = AD^2 + BD^2$ (3)
3.4	$\tan BDM = m_{BD} = 1$ $\therefore BDM = 45^{\circ}$	✓ tan BDM = m _{BD} ✓ answer (2)
	OR $\sin B\hat{D}M = \frac{BM}{BD} = \frac{10}{10\sqrt{2}} = \frac{1}{\sqrt{2}}$ ∴ $B\hat{D}M = 45^{\circ}$	$\checkmark \sin B\hat{D}M = \frac{1}{\sqrt{2}}$ $\checkmark \text{ answer}$
Spor	sored by Anglo American Platinum 30 Con	pilled by XL Education

3.5	$T(x;y) = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$	
	$=\left(\frac{-2+8}{2};\frac{0+10}{2}\right)$	
	= (3; 5)	√T(3;5)
	T symmetrical about BM/T is simmetries om BM	
	 ∴ distance of T to BM = 5 units = distance from BM to C ∴ C(13; 5) 	√value of x
		✓ value of y (3)
	OR/OF	ν-/
	$m_{\rm DF} = \frac{3\frac{1}{3} - 0}{8 - (-2)} = \frac{1}{3}$	
	Equation of DF: $y - y_1 = m(x - x_1)$	√eq of DF
	$y - 0 = \frac{1}{3}(x + 2)$	
	$y = \frac{1}{3}x + \frac{2}{3}$	
	Equation of BC: $y = -x + 18$	
	$\frac{1}{3}x + \frac{2}{3} = -x + 18$	
	4x = 52	
	x = 13 $\therefore y = -13 + 18 = 5$	√value of x
	∴ C(13;5)	✓ value of y
		(3)
3.6	$area/opp \Delta BDF = area/opp \Delta BDM - area/opp \Delta DFM$	✓ formula/method ✓ 10 (DM)
	$=\frac{1}{2}(10)(10)-\frac{1}{2}(10)(\frac{10}{3})$	
		\checkmark 10 (BM) $\checkmark \frac{10}{3}$ or $3\frac{1}{3}$ (⊥h)
	$= \frac{100}{3} \text{ or } 33\frac{1}{3} \text{ or } 33,3 \text{ square units/} vk \text{ eenh}$	✓ answer
	ORIGE	(5)
	OR/OF	✓ formula/method
	area/opp $\triangle BDF = \frac{1}{2}.BF.DM$	
	$=\frac{1}{2}\left(\frac{20}{3}\right)(10)$	✓ BF ✓ ✓ DM
	$= \frac{100}{3} \text{ or } 33\frac{1}{3} \text{ or } 33,3 \text{ square units/} vk \text{ eenh}$	✓ answer (5)
	OR/OF	

$$\tan F\hat{D}M = m_{DC} = \frac{5-0}{13+2} = \frac{1}{3}$$
 or $\tan F\hat{D}M = \frac{FM}{DM} = \frac{\frac{10}{3}}{10} = \frac{1}{3}$ \checkmark gradient/ratio

$$\hat{FDM} = 18.43^{\circ}$$

BF =
$$\frac{20}{3}$$
 or $6\frac{2}{3}$

$$DF^2 = (10)^2 + \left(3\frac{1}{3}\right)^2$$
 [Pyth ΔDFM]

DF =
$$(10)^2 + (3\frac{1}{3})$$
 [Pyth Δ DFM]

DF = 10.54 or $\frac{\sqrt{1000}}{3}$ or $\frac{10\sqrt{10}}{3}$ BD = $\sqrt{(10-0)^2 + (8+2)^2}$ = $\sqrt{200}$ or $10\sqrt{2}$

∴ area/opp
$$\triangle BDF = \frac{1}{2} .BF.FD.sinBFD$$

$$=\frac{1}{2}\left(\frac{20}{3}\right)\left(\frac{10\sqrt{10}}{3}\right)(\sin 108,43)$$

$$= \frac{100}{3} \text{ or } 33\frac{1}{3} \text{ or } 33,33 \text{ square units/} vk \text{ eenh}$$

√ answer (5)

OR/OF

BF =
$$\frac{20}{3}$$
 or $6\frac{2}{3}$

BD =
$$\sqrt{(10-0)^2 + (8+2)^2}$$

= $\sqrt{200} \text{ or } 10\sqrt{2}$

area/opp
$$\triangle BDF = \frac{1}{2}.BF.BD.sinDBF$$

$$= \frac{1}{2} \left(\frac{20}{3}\right) \left(\sqrt{200}\right) (\sin 45^{\circ})$$

$$= \frac{100}{3} \text{ or } 33\frac{1}{3} \text{ or } 33,33 \text{ square units/}vk \text{ eenh}$$

- ✓ formula/method
- √correct substitution into area rule
- √ answer

(5)

OR/OF

area/opp ΔBDF

=
$$area/opp \Delta BCD - area/opp \Delta BCF$$

$$= \frac{1}{2} \left(10\sqrt{2} \right) \left(5\sqrt{2} \right) - \frac{1}{2} \left(\frac{20}{3} \right) (5)$$

$$= \frac{100}{3} \text{ or } 33\frac{1}{3} \text{ or } 33,33 \text{ square units/} vk \text{ eenh}$$

✓ formula/method

$$\checkmark$$
 BD = $10\sqrt{2}$

$$\checkmark$$
 BC = $5\sqrt{2}$

$$\checkmark BF = \frac{20}{2}$$

(5)

OR/OF

$$\tan F \hat{D} M = m_{DC} = \frac{5-0}{13+2} = \frac{1}{3} \qquad \text{or} \quad \tan F \hat{D} M = \frac{10}{3} = \frac{1}{3}$$

$$F \hat{D} M = 18,43^{\circ}$$

$$B \hat{D} F = 26,56^{\circ}$$

$$\operatorname{area/opp} \Delta BDF$$

$$= \frac{1}{2}.BD.DF.\sin B \hat{D} F$$

$$= \frac{1}{2}.BD.DF.\sin B \hat{D} F$$

$$= \frac{1}{2}.\left(10\sqrt{2}\right)\left(\frac{10\sqrt{10}}{3}\right).\sin 26,56^{\circ}$$

$$= \frac{100}{3} \text{ or } 33\frac{1}{3} \text{ or } 33,33 \text{ square units/} \text{ v $eenh}$$

$$(5)$$

$$[18]$$

Question 4

May June 2016

4.1	radius ⊥ tangent /raaklyn	√ R
		(1)
4.2	$CR^2 = TR^2 + CT^2$ (Pyth)	/ Andredien
	$CR^2 = 20^2 + 10^2 = 500$	✓ substitution
	$CR = \sqrt{500} \text{ or } 10\sqrt{5}$	✓ answer
	011 - 4500 01 1045	(2)
4.3	$CR^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$	
	$500 = (k-3)^2 + (21+1)^2$	✓ substitution
	$k^2 - 6k + 9 + 484 = 500$	
	$k^2 - 6k - 7 = 0$	✓ standard form
	(k-7)(k+1) = 0	
	$k = 7$ or $k \neq -1$	√ factors √ k = 7
		(4)
	OR/OF	
	$CR^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$	
	$500 = (k-3)^2 + (21+1)^2$	✓ substitution
	$(k-3)^2 = 16$	✓ square form
	k-3=4 or $k-3=-4$	√ square root
	$k = 7$ or $k \neq -1$	√ k = 7
	n = 1 V1 n 7 - 1	(4)

4.4	$(x-3)^2 + (y+1)^2 = 100$	✓✓ answer	
4.5	60 10 100 70		(2)
4.5	CS = 10 and CS ⊥ PS ∴ S(3; -11)	√S(3;-11)	
	y = -11	✓ answer	
	,	distres	(2)
4.6.1	S(3;-11)		
	$\therefore 3(-11) - 4x = 35$	✓ substitutin	ıg
	x = -17		
	∴ P(-17;-11)	✓ answer	
			(2)
	OR/OF		
	$\frac{4}{3}x + \frac{35}{3} = -11$	√ equating	
		' '	
	$\frac{4}{3}x = \frac{-68}{3}$		
	x = -17	✓ answer	
	P(-17;-11)	6 11 611	(2)
4.6.2	PT = PS [tangents from common point/rklyne vanaf dies pt] = 17 + 3 = 20 units	✓ S ✓ R ✓ answer	
	- 17 + 3 - 20 times	* allswei	(3)
	OR		(-)
	$PC = \sqrt{(-17-3)^2 + (-11+1)^2}$		
	$=\sqrt{500} \ or \ 10\sqrt{5}$	✓ value of P	C
	$PT^2 = PC^2 - TC^2$ [Pyth th]	/ using Drd	l.
	= 500 - 100	✓ using Pyt	п
	= 400 ∴ PT = 20	✓ answer	
	:. P1 = 20		(3)
	OR		
	$PC = \sqrt{(-17-3)^2 + (-11+1)^2}$	✓ value of I	oc.
	$=\sqrt{500} \ or \ 10\sqrt{5}$	✓ S/R or	
	$\Delta PTC = \Delta RTC [90^{\circ}HS]$	proved	
	∴ PT = TR	/	
	∴ PT = 20	✓ answer	(3)
4.7.1	M(3;-16)	√answer	(2)
			(1)
I			

4.7.2	Radius = 4	✓ answer
		(1)
4.7.3	$r_1 + r_2 = 10 + 4 = 14$	$\checkmark r_1 + r_2$
	distance CM = $\sqrt{(3-3)^2 + (-1+16)^2}$	
	$=\sqrt{225}$	
	=15	✓ 15
	$CM \ge r_1 + r_2$	√explanation
	Therefore the two circles do not intersect or touch./Daarom sny of raak die twee sirkels nie.	(3) [21]

Question 3 November 2016

3.1		iags of rectangle bisect/		
		kl v reghoek halveer]		
	$=M\left(\frac{-7+6}{2};\frac{2+3}{2}\right)$	√ v.	value of M	
	$= M\left(-\frac{1}{2}; \frac{5}{2}\right)$		value of M	(2)
3.2	$m_{\rm BC} = \frac{3-0}{6-p} = \frac{3}{6-p}$	√ans	wer	
	OR/OF			(1)
	$m_{\rm BC} = \frac{0-3}{p-6} = \frac{-3}{p-6}$	√ans	wer	(1)
3.3	$m_{AD} = m_{BC} [AD BC]$			
	$m_{\rm BC} = 2$	✓ m	_{BC} = 2	
	$\frac{3}{6-p}=2$	✓ eq	uating	
	•			
	3 = 12 - 2p			
	$p = 4\frac{1}{2}$	√ans	wer	(3)
	OR/OF	✓ m	_{BC} = 2	(-)
	$y - y_1 = 2(x - x_1)$,	BC - 2	
	C(6;3)			
	y-3=2(x-6)		bstituting ; 3)	
	$\therefore y = 2x - 9$,	,-,	
	but y = 0			
	$\therefore x = 4\frac{1}{2} = p$	√ans	wer	(3)
	OR/OF			

	y = 2x + c		
	3 = 12 + c	√ m _{BC} = 2	
	-9 = c	m _{BC} = 2	
	y = 2x - 9		
	0 = 2x - 9	√ substituting	
	9 9		
	$x = \frac{9}{2} \qquad \therefore p = \frac{9}{2}$		
		√answer	
3.4	DB = AC [diag of rectangle = / hoskl v reghosk =]		(3)
3.4			
	$AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	√ substitution	
	$AC = \sqrt{(6+7)^2 + (3-2)^2}$		
	$AC = \sqrt{13^2 + 1^2}$	✓ length of AC	
	$AC = \sqrt{170}$		
	∴ DB = $\sqrt{170}$ or 13,04	✓ AC = BD	(2)
3.5		/ tan a - m	(3)
3.5	$\tan \alpha = m_{\text{BC}} = 2$	$\checkmark \tan \alpha = m_{BC}$ $\checkmark \alpha = 63,43^{\circ}$	
	$\alpha = 63,43^{\circ}$	v α = 65,45	(2)
3.6	In quadrilateral OFBG:		\- <i>/</i>
	OFB = 63,43° [vert opp ∠s/regoorst ∠e]	✓ size of OFB	
	$\hat{FOG} = \hat{GBF} = 90^{\circ}$		
	∴ OGB = 360° - [90° + 90° + 63,43°] [sum ∠s quad/som ∠e vierh = 360°]	✓ S	
	∴ OĜB = 116,57°	✓ answer	
	OR/OF	* answer	(3)
	1	$\sqrt{m_{AB}} = -\frac{1}{2}$	
	$m_{AB} = -\frac{1}{2}$	$\sim m_{AB} = -\frac{1}{2}$	
	90° + OĜA = 153,43°		
	∴ OĜA = 63,43°	√ S	
	$O\hat{G}B = 180^{\circ} - 63,43^{\circ}$	✓ answer	
	= 116,57°		(3)
	OR/OF		
	FOG = GBF = 90° ∴GOFB is eye quad	✓ S	
	OGB = 180° - 63,43° [∠s of eye quad = 180°]	✓ S	
	= 116,57°	✓ answer	(2)
	OR/OF		(3)
	OFB = 63,43°		
	$X\hat{O}G = F\hat{B}G = 90^{\circ}$	✓ S	
	∴ OGBF is a cyclic quad		
	∴ OĜB = 180° – 63,43°	✓ S	
	OĜB = 116,57°	✓ answer	(3)
	OGD = 110,3 /*		(-)

3.7	$M\left(-\frac{1}{2}; \frac{5}{2}\right)$ is the centre/is die middelpunt	✓ M is centre
	$r = \frac{\sqrt{170}}{2} = \text{radius}$ [BD is diameter/middellyn]	$\checkmark r = \frac{\sqrt{170}}{2}$
	$\left(x + \frac{1}{2}\right)^2 + \left(y - \frac{5}{2}\right)^2 = \left(\frac{\sqrt{170}}{2}\right)^2 = \frac{85}{2} = 42,5$	✓ equation (3)
3.8	CBM = BÂM = 45° [diag of square bisect ∠s/hoekl v vierk halv ∠e] ∴ BC will be a tangent [converse tan chord th/omgekeerde raakl-koordst] OR/OF	√S √ R (2)
	AMB = 90° [diag of square bisect ⊥] ∴ AB is diameter	√S
	BC ⊥ AB ∴ BC is tangent [line ⊥ radius or converse tan-chord th] BC ⊥ AB	✓ R (2) [19]

Question 4 November 2016

4.1	∠ in semi circle/ ∠ at centre = 2∠ on circle	√R	
	∠ in halfsirkel /∠ by middelpt = 2∠ op sirkel	(1	l)
4.2	$m_{\rm TS} = \frac{7-2}{3-5}$	✓ substitution	
	$=-\frac{5}{2}$	✓ m _{TS}	2)
4.3	$m_{\text{TS}} \times m_{\text{RS}} = -1$ [TS\perp SR]		
	$\therefore m_{\rm RS} = \frac{2}{5}$	✓ m _{RS}	
	$y = \frac{2}{5}x + c$ $2 = \frac{2}{5}(5) + c$		
		✓ substitution m and (5; 2)	
	c = 0		
	$y = \frac{2}{5}x$	✓ equation (3)	
	OR/OF		

	$m_{\rm TS} \times m_{\rm RS} = -1$ [TS\perp SR] $\therefore m_{\rm RS} = \frac{2}{5}$	✓ m _{RS}	
	$y - y_1 = \frac{2}{5}(x - x_1)$ $y - 2 = \frac{2}{5}(x - 5)$ $y = \frac{2}{5}x$	✓ substitution n and (5; 2) ✓ equation	(3)
4.4.1	$r = \sqrt{36\frac{1}{4}}$ $TR = 2.r = 2\left(\sqrt{36\frac{1}{4}}\right) = \sqrt{145}$	✓ r ✓ answer	(2)
	OR/OF $TM = \sqrt{(3-9)^2 + \left(7 - 6\frac{1}{2}\right)^2} = \frac{\sqrt{145}}{2}$ $TR = 2r = 2\left(\sqrt{36\frac{1}{4}}\right) = \sqrt{145}$	✓ substitution ✓ answer	(2)
4.4.2	$M\left(9; 6\frac{1}{2}\right)$ $\therefore \frac{x_R + 3}{2} = 9 \text{ and } \frac{y_R + 7}{2} = 6\frac{1}{2}$ $\therefore R(15; 6)$ Answer only: full marks Answer only: only 1 coordinate correct (1 mark) $M\left(9; 6\frac{1}{2}\right)$ $\therefore R\left(9 + 6; 6\frac{1}{2} - \frac{1}{2}\right) = R(15; 6)$	✓ M ✓ x coordinate ✓ y coordinate ✓ M ✓ x coordinate ✓ y coordinate	(3)
	OR/OF		

	$m_{TM} = \frac{9-3}{6\frac{1}{2}-7} = -\frac{1}{12}$		
	$TM: 7 = -\frac{1}{12}(3) + c y = -\frac{1}{12}x + \frac{29}{4}$ (1)		
	$SR: y = \frac{2}{5}x$ (2)	✓ equating	
	$\frac{2}{5}x = -\frac{1}{12}x + \frac{29}{4}$	✓ x coordinate	
	$\frac{29}{60}x = \frac{29}{4}$	✓ y coordinate	(3)
	$\therefore x = 15$		(5)
	$y = \frac{2}{5}(15) = 6$		
4.4.3	$ST = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	4-1	
	$ST = \sqrt{(5-3)^2 + (2-7)^2}$	✓substitution	
	$ST = \sqrt{4 + 25} = \sqrt{29}$ $TS = \sqrt{29} = \sqrt{5} = 1$	✓ answer	
	$\sin R = \frac{TS}{TR} = \frac{\sqrt{29}}{\sqrt{145}} or \frac{\sqrt{5}}{5} or \frac{1}{\sqrt{5}} or 0,45$	✓ ratio	(3)
	OR/OF $TS = \sqrt{29}$		
	$SR = 2\sqrt{29}$		
	area of $\Delta TSR = \frac{1}{2} (\sqrt{29})(2\sqrt{29}) = 29$	√area ✓ rule	
	$29 = \frac{1}{2}(\sqrt{145})(2\sqrt{29})\sin R$	✓ ratio	(2)
	$\sin R = \frac{\sqrt{5}}{5} or \frac{1}{\sqrt{5}}$		(3)
4.4.4	$m_{\text{TR}} = \frac{7 - 6\frac{1}{2}}{3 - 9} = -\frac{1}{12}$ OR/OF $m_{\text{TR}} = \frac{7 - 6}{3 - 15} = -\frac{1}{12}$	$\sqrt{m_{\text{TR}}} = -\frac{1}{12}$	
	$m_{\text{TR}} \times m_{\text{KTL}} = -1$ [r \pm tangent]	√ m _{KTL} = 12	
	$m_{\text{KTL}} = 12$ $y - y_1 = 12(x - x_1)$		
	y-7=12(x-3)	$\sqrt{y} = 12x - 29$	
	y = 12x - 29 substitute $K(a;b)$:		(3)
	b = 12a - 29		(-)
	OR/OF		

	$m_{\text{TR}} = \frac{7 - 6\frac{1}{2}}{3 - 9} = -\frac{1}{12}$ $m_{\text{TR}} \times m_{\text{KTL}} = -1$ [$r \perp \text{tangent}$] $\frac{b - 7}{a - 3} = 12$ $b - 7 = 12(a - 3)$ $b = 12a - 29$	$\sqrt{m_{\text{TR}}} = -\frac{1}{12}$ $\sqrt{m_{\text{KTL}}} = 12$ $\sqrt{\text{substitution}}$ $(3;7) & (a;b)$ (3)
	OR/OF $KR^{2} = TR^{2} + TK^{2}$ $(a-15)^{2} + (b-6)^{2} = (15-3)^{2} + (6-7)^{2} + (a-3)^{2} + (b-7)^{2}$ $-30a + 225 - 12b + 36 = 144 + 1 - 6a + 9 - 14b + 49$ $2b = 24a - 58$ $b = 12a - 29$	✓ subst into Pyth ✓ multiplication ✓ simplification (3)
4.4.5	TK = TR $\sqrt{(a-3)^2 + (b-7)^2} = \sqrt{145}$ $(a-3)^2 + (b-7)^2 = 145$ Substitute $b = 12a - 29$ [from 4.4.4] $(a-3)^2 + (12a-29-7)^2 = 145$	✓ substitution into distance formula ✓ substitution of b = 12a - 29
	$(a-3)^{2} + (12a-36)^{2} = 145$ $a^{2} - 6a + 9 + 144a^{2} - 864a + 1296 - 145 = 0$ $145a^{2} - 870a + 1160 = 0$ $a = \frac{870 \pm \sqrt{(870)^{2} - 4(145)(1160)}}{290}$ $a = 2 \text{ or } a = 4$ $b = 12(2) - 29$ $= -5$ $= 19$ $K(2; -5)$	✓ standard form ✓ subst into formula or factorise ✓ values of a ✓ value of b (6)
	OR/OF	

TK = TR	
$\sqrt{(a-3)^2 + (b-7)^2} = \sqrt{145}$	✓ substitution into
$(a-3)^2 + (b-7)^2 = 145$	distance formula
Substitute $b = 12a - 29$ [from 4.4.4]	
$(a-3)^2 + (12a-29-7)^2 = 145$	✓ substitution of b = 12a - 29
$(a-3)^2 + (12a-36)^2 = 145$	b = 12a - 29
$(a-3)^2 + 144(a-3)^2 = 145$	
$(a-3)^2 = 1$	$\sqrt{(a-3)^2} = 1$
$a - 3 = \pm 1$	√ ±1
a = 2 or 4	✓ values of a
b = 12(2) - 29 or $b = 12(4) - 29$	
=-5 = 19	✓ value of b
∴ K(2; –5)	(6)
OR/OF	
$KR^2 = TR^2 + TK^2$	✓ substitution ✓ substitution of
$(a-15)^2 + (b-6)^2 = 145 + 145$	b = 12a - 29
$(a-15)^2 + (12a-29-6)^2 = 290$	
$(a-15)^2 + (12a-35)^2 = 290$	
	✓standard form
$a^2 - 30a + 225 + 144a^2 - 840a + 1225 = 290$	
$145a^2 - 870a + 1160 = 0$	√ factors
$a^2 - 6a + 8 = 0$	
$\therefore (a-2)(a-4)=0$	✓ values of a
a=2 or $a=4$	
b = 12(2) - 29 or $b = 12(4) - 29$	✓ value of b
=-5 =19	(6)
K(2;-5)	
	[23]

Question 5 November 2014

Q ui		14046111861 2014
5.1	$\sin C \hat{A} P = \frac{CP}{AP}$ $\sin x = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$ $x = 60^{\circ}$	✓ correct sine ratio/ korrekte sin-verh ✓ $\frac{\sqrt{3}}{2}$
	OR/OF $\frac{\sin 90^{\circ}}{8} = \frac{\sin x}{4\sqrt{3}}$ $\sin x = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$ $x = 60^{\circ}$	(2) ✓ correct sine ratio/ korrekte sin-verh ✓ $\frac{\sqrt{3}}{2}$ (2)
5.2	$\hat{CPA} = \hat{DPA} = 30^{\circ}$ (AP bisects \hat{DPC})	✓ DPA = 30°
	$AD^{2} = AP^{2} + DP^{2} - 2.AP.DP.\cos APD$ $= 8^{2} + 4^{2} - 2(8)(4)\cos 30^{\circ}$ $= 8^{2} + 4^{2} - 2(8)(4)(\frac{\sqrt{3}}{2})$	✓ correct subst into cosine rule/ korrekte subst in cos-reël
	= 24,57 AD = 4,96	✓ 24,57 ✓ 4,96 (4)
		(4)
5.3	$\frac{\sin D\hat{A}P}{DP} = \frac{\sin A\hat{P}D}{AD}$ $\frac{\sin y}{4} = \frac{\sin 30^{\circ}}{4,96}$ $\sin y = \frac{4\sin 30^{\circ}}{4,96}$ $= 0,403$ $y = 23,78^{\circ}$	✓ correct subst into sine rule/ korrekte subst in sin-reël ✓ sin y subject ✓ 23,78° (3)
	OR/OF	
	$AD^2 = AP^2 + DP^2 - 2.AP.DP.\cos DAP$	
	$4^2 = 8^2 + (4,96)^2 - 2(8)(4,96) \cdot \cos y$	✓ correct subst into cosine rule/ korrekte subst in cos-reël
	$\cos y = \frac{8^2 + (4,96)^2 - 4^2}{2(8)(4,96)}$	✓ cos y subject
	$\cos y = 0.9148$	

 $y = 23,82^{\circ}$

√ 23,82°

Question 6 November 2014

6.1	$\cos^2(180^\circ + x) + \tan(x - 180^\circ) \sin(720^\circ - x) \cos x$	((
	$= (-\cos x)^2 + [-(-\tan x)](-\sin x)(\cos x)$	$\checkmark (-\cos x)^2 \text{ or } \cos^2 x$ $\checkmark \tan x \text{ or } -(-\tan x)$
	$= \cos^2 x + \left(\frac{\sin x}{\cos x}\right)(-\sin x)(\cos x)$	√ -sin x
	$=\cos^{-}x + \left(\frac{-\sin x}{\cos x}\right)$	
	$=\cos^2 x - \sin^2 x$	$\checkmark \tan x = \frac{\sin x}{\cos x}$
	$= \cos 2x$	$\sqrt{\cos^2 x - \sin^2 x}$
	- 000 2 4	v cos x=sm x
6.2	$\sin(\alpha - \beta)$	✓ rewrite as/herskryf
	$=\cos[90^{\circ}-(\alpha-\beta)]$	$\cos[(90^{\circ} - \alpha) + \beta]$
	$= \cos[(90^\circ - \alpha) + \beta]$	✓ expansion/
	$= \cos(90^{\circ} - \alpha)\cos\beta - \sin(90^{\circ} - \alpha)\sin\beta$	uitbreiding
	$= \sin \alpha \cos \beta - \cos \alpha \sin \beta$	√simpl/vereenv
	= sind cosp = cosu sinp	(3)
	OR/OF	
	$\sin(\alpha - \beta)$	/ rounito as the order of
	$=\cos[90^{\circ}-(\alpha-\beta)]$	√ rewrite as/herskryf cos[(90° + β) + (-α)]
	$= \cos[(90^{\circ} + \beta) + (-\alpha)]$	$\checkmark \text{ expansion}/$
	$= \cos(90^{\circ} + \beta)\cos(-\alpha) - \sin(90^{\circ} + \beta)\sin(-\alpha)$	uitbreiding
	$=(-\sin\beta)\cos\alpha-\cos\beta(-\sin\alpha)$	√simpl/vereenv
	$= \sin \alpha \cos \beta - \cos \alpha \sin \beta$	(3)
6.3	$x^2 - y^2$	(-)
	$= \sin^2 76^\circ - \cos^2 76^\circ$	
	$=-(\cos^2 76^\circ - \sin^2 76^\circ)$	$\sqrt{-(\cos^2 76^\circ - \sin^2 76^\circ)}$
	$=-\cos 2(76^{\circ})$	✓ recognition of cos
	= - cos 152°	double angle
	$=-(-\cos 28^{\circ})$ OR/OF $=-\cos (90^{\circ} + 62^{\circ})$	√ - cos 152°
	$= \cos 28^{\circ}$ $= -(-\sin 62^{\circ})$	✓ cos 28°
	$= \cos (90^{\circ} - 62^{\circ})$ $= \sin 62^{\circ}$ $= \sin 62^{\circ}$	V COS 28
	- Sin 02	
	OR/OF	(4)
	$x^2 - y^2$	
	$= \sin^2 76^\circ - \cos^2 76^\circ$	√ cos 14°
	= sin 76° sin 76° – cos 76° cos 76°	√ sin 14°
	$= \sin 76^{\circ} \cos 14^{\circ} - \cos 76^{\circ} \sin 14^{\circ}$	√ recognition of sine
	$= \sin (76^{\circ} - 14^{\circ})$	compound angle
	$= \sin 62^{\circ}$	√ sin(76° – 14°)
	OR/OF	(4)
	x^2-y^2	(4)
	$= \sin^2 76^\circ - \cos^2 76^\circ$	√ cos² 14°
	$=\cos^2 14^\circ - \sin^2 14^\circ$	√ sin² 14°
	= cos 2(14°)	✓ recognition of cos
	= cos 28°	double angle
	= sin 62°	√ cos 28°
		(4)
		[12]

Question 7 November 2014

7.1	$0 \le y \le 2$ or $y \in [0; 2]$	✓ critical values/
		kritieke waardes
		✓ notation/notasie
7.2	$\sin x + 1 = \cos 2x$	(2)
7.2	$\sin x + 1 = 1 - 2\sin^2 x$	$\sqrt{1-2\sin^2x}$
	$2\sin^2 x + \sin x = 0$	✓ st form/st vorm
7.0	$\sin x(2\sin x + 1) = 0$	(2)
7.3	$\sin x(2\sin x + 1) = 0$	$\sqrt{\sin x} = 0$ or
	$\sin x = 0 \qquad or \qquad \sin x = -\frac{1}{2}$	$\sin x = -\frac{1}{2}$
	$x = 0^{\circ} + k.360^{\circ}$ or $x = 210^{\circ} + k.360^{\circ}$ or	✓ 0°; 180° OR/ <i>OF</i>
	$x = 180^{\circ} + k.360^{\circ}$ $x = 330^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$	$x = k.180^{\circ}$ $\checkmark 210^{\circ} ; 330^{\circ}$
	OR/OF	√ k.360°, k ∈ Z
	$x = k.180^{\circ}, k \in \mathbb{Z}$	(4)
7.4		
		√ y-intercept/afsnit √ x-intercepts/afsnitte
		✓ min/max points/
		min/maks punte
	\$ 10 pt 10 2k 2f0 t	
		(2)
7.5	f(x) = g(x) at/by:	(3)
	$x = -30^{\circ}$; 0°; 180°; 210°	√ -30°; 0°; 180°; 210°
	$f(x + 30^\circ) = g(x + 30^\circ) \text{ at/by}$:	// 600 . 300 .
	$x = -60^{\circ}$; -30° ; 150° ; 180°	√√ -60°; -30°; 150°; 180°
		(3)
7.6	Series will converge if/Reeks sal konvergeer as: $-1 \le r \le 1$	√-1 <r<1< th=""></r<1<>
	$-1 < 2\cos 2x < 1$	$\sqrt{r} = 2\cos 2x$
	$-\frac{1}{2} < \cos 2x < \frac{1}{2}$	$\checkmark -\frac{1}{2} < \cos 2x < \frac{1}{2}$
	$\therefore 30^{\circ} < x < 60^{\circ} \text{ or } x \in (30^{\circ}; 60^{\circ})$	√√ 30° < x < 60°
		(5)
		[19]

Question 5 Feb March 2015

5.1	$x^2 + y^2$	
	$= (3 \sin \theta)^2 + (3 \cos \theta)^2$	
	$=9 \sin^2 \theta + 9 \cos^2 \theta$	√ simpl/vereenv
	$=9(\sin^2\theta + \cos^2\theta)$	√ CF/GF = 9
	=9(1)	
	=9	✓ answer/antw
		(3)
5.2	$\sin(540^{\circ} - x).\sin(-x) - \cos(180^{\circ} - x).\sin(90^{\circ} + x)$	$\sqrt{\sin(540^\circ - x)} = \sin x$
3.2		
	$\sin(180^{\circ} - x).\sin(-x) - \cos(180^{\circ} - x).\sin(90^{\circ} + x)$	$\checkmark \sin(-x) = -\sin x$
	$= (\sin x)(-\sin x) - (-\cos x)(\cos x)$	$\sqrt{\cos(180^{\circ} - x)} = -$
	$=-\sin^2 x + \cos^2 x$	cos x
	$=\cos 2x$	$\sqrt{\sin(90^\circ + x)} = \cos x$
		$\sqrt{-\sin^2 x + \cos^2 x}$
		✓ cos 2x
		(6)
5.3.1	$OT = \sqrt{x^2 + p^2}$	$\checkmark OT = \sqrt{x^2 + p^2}$ $\checkmark \sin \alpha = \frac{y_T}{OT}$
	$\sin \alpha = \frac{y_T}{QT}$	$\sqrt{\sin \alpha} = \frac{y_T}{\alpha T}$
	OT	OI
	p	
	$=\frac{p}{\sqrt{x^2+p^2}}$	
	$\sqrt{x^2 + p^2}$	
	р _ р	
	$\frac{p}{\sqrt{x^2 + p^2}} = \frac{p}{\sqrt{1 + p^2}}$	
		$\checkmark x^2 = 1$
	$x^2 = 1$	
	x = -1	
	–	(3)
	OR/OF	(3)
	OR/OF (P lies in 3 rd quadrant)	
	$x^2 + y^2 = r^2$	$\checkmark \chi^2 + y^2 = r^2$
	$x^{2} + p^{2} = \left(\sqrt{1 + p^{2}}\right)^{2}$	
		✓ subst
	$x^2 + p^2 = 1 + p^2$	$\sqrt{x^2} = 1$
	$x^2 = 1$	$\checkmark x^2 = 1$
	x = -1 (P lies in 3 rd quadrant)	
	$\chi = -1$ (1 les in 3 quadrant)	
		(3)
5.3.2	cos (180° + α)	
	= -000 W	√ - cos α
	()	
	-1	
	$=-\frac{1}{\sqrt{1+n^2}}$	
	(VI+P)	
	_ 1	
	$=\frac{1}{\sqrt{1+m^2}}$	
	$= -\cos a$ $= -\left(\frac{-1}{\sqrt{1+p^2}}\right)$ $= \frac{1}{\sqrt{1+p^2}}$	✓ answer/antw
		(2)

5.3.3	$\cos 2\alpha$ $= \cos^2 \alpha - \sin^2 \alpha$ $= \left(\frac{-1}{\sqrt{1+p^2}}\right)^2 - \left(\frac{p}{\sqrt{1+p^2}}\right)^2$	✓ expansion/ uitbreiding
	$= \frac{1}{1+p^2} - \frac{p^2}{1+p^2}$ $= \frac{1-p^2}{1+p^2}$	√√ squaring each term/kwadreer elke term (3)
	OR/OF	
	$\cos 2\alpha$ $= 1 - 2\sin^2 \alpha$ $= 1 - 2\left(\frac{p}{\sqrt{1+p^2}}\right)^2$	✓ expansion/ uitbreiding
	p^2	✓ squaring/kwadrering
	$= 1 - 2\left(\frac{p^2}{1+p^2}\right)$ $= 1 - \frac{2p^2}{1+p^2}$	✓ writing as single
	$=\frac{1+p^2-2p^2}{1+p^2}$	fraction/skryf as enkelterm
	$=\frac{1-p^2}{1+p^2}$	(3)
	OR/OF	
	$\cos 2\alpha$	
	= 2 cos² cr = 1	

 $\cos 2\alpha$ $= 2\cos^{2} \alpha - 1$ $= 2\left(\frac{-1}{\sqrt{1+p^{2}}}\right)^{2} - 1$ $= 2\left(\frac{1}{1+p^{2}}\right) - 1$ $= \frac{2}{1+p^{2}} - 1$ $= \frac{2-1-p^{2}}{1+p^{2}}$ $= \frac{1-p^{2}}{1+p^{2}}$

- ✓ expansion/ uitbreiding
- √squaring/kwadrering
- √ writing as single fraction/skryf as enkelterm

(3)

5 / 1	The identity is undefined for this identity is a modeful and an	-/ v = 00
5.4.1	The identity is undefined for/die identiteit is ongedefinieerd as:	√ x = 0°
	$2\sin^2 x = 0$	√ x = 90°
	$\therefore \sin x = 0$: $x = 0^{\circ}$; 180°	✓ x = 180°
	or/of	
	$\tan x = \infty$: $x = 90^{\circ}$	(3)
	∴ x = 0°; 90°; 180°	
5.4.3	$2 \tan x - \sin 2x$	
5.4.2	$LHS/LK = \frac{2 \tan x - \sin 2x}{2 \sin^2 x}$	
	$3\left(\sin x\right)$	$\sqrt{\sin x}$
	$2 \longrightarrow 1 - 2 \sin x \cos x$	cos x
	$=\frac{\cos x}{\cos x}$	✓ 2sinx.cosx
	$2\sin^2 x$	- Zami.coar
	$\left(2\sin x - 2\sin x \cos^2 x\right)$	✓ simplify numerator/
		vereenv teller
	$(\cos x) 2\sin^2 x$	vereenv tetter
	$2 \sin x (1 - \cos^2 x)$ 1	(6-4i-i/6-14
	$=\frac{\cos x}{2\sin^2 x}$	√ factorising/fakt
		. 2 . 2
	$= \frac{2\sin x(\sin^2 x)}{1} \times \frac{1}{1}$	$\checkmark 1 - \cos^2 x = \sin^2 x$
	$\frac{1}{\cos x}$ $\frac{1}{2\sin^2 x}$	
	$\sin x$	√ simplify to/vereenv
	$={\cos x}$	$na = \frac{\sin x}{x}$
	= tan x	cosx
	= RHS/RK	
	OR/OF	(6)
	Itan v = sin Iv	
	$LHS/LK = \frac{2 \tan x - \sin 2x}{2 \sin^2 x}$	
	ZSIN X	
	$2\left(\frac{\sin x}{\cos x}\right) - 2\sin x \cos x$	$\sin x$
	$\frac{2(\cos x)^{-2\sin x\cos x}}{\cos x}$	· —
	$=\frac{2\sin^2 x}{\cos x}$	cos x ✓ 2sinx.cosx
		V ZSIIIX.COSX
	$= \frac{2\sin x - 2\sin x \cos^2 x}{2\sin x \cos^2 x}$	/ -i1/
	$2\sin^2 x \cos x$	✓ simpl/vereenv
	$2\sin x(1-\cos^2 x)$	
	$=\frac{2\sin^2 x \cos x}{2\sin^2 x \cos x}$	√ factorising/fakt
	$=\frac{2\sin x \cdot \sin^2 x}{1+\cos^2 x}$	$\sqrt{1-\cos^2 x} = \sin^2 x$
	$2\sin^2 x \cos x$	- 1 cos x sin x
	$\sin x$	✓ simplify to /vereenv
	$={\cos x}$	
	$= \tan x$	$na \frac{\sin x}{x}$
	= RHS/RK	cos x
	- KIIO/KIK	(6)
		[26]

Question 6 Feb March 2015

6.1.1 In $\triangle TAK$: $\frac{AK}{KT} = \sin K\hat{T}A$ $AK = KT. \sin x$ $= 2 \sin x$		✓ correct trig ratio/ korrekte trigverh. ✓ answer/antw
1 1	KT n x K	✓ correct subst into sine rule/korrekte subst in sin-reël ✓ answer/antw (2)

Question 5 November 2015

5.1.1	sin 203°	✓ reduction/
	= - sin 23°	reduksie
	$=-\sqrt{k}$	✓ answ ito/antw
		itv k
513	100- 4 120-	(2)
5.1.2	$\cos^2 23^\circ = 1 - \sin^2 23^\circ$	✓identity/identiteit
	=1-k	✓ cos² 23° ito/itv k
	$\cos 23^\circ = \sqrt{1-k}$	
	C0323 = VI-N	✓ answ/antw
		(3)
	OR/OF	
	$x^2 + (\sqrt{k})^2 = 1$	
	Τ	
	$x^2 = 1 - k$	$\checkmark x^2 = 1 - k$
	$x = \sqrt{1 - k} \qquad (x; \sqrt{k})$	✓ x ito/itv k
		✓ X Ito/IIV K
	$\cos 23^\circ = \frac{\sqrt{1-k}}{1} = \sqrt{1-k}$	✓ answ/antw
512	(220) — 220	(3)
5.1.3	$\tan (-23^\circ) = -\tan 23^\circ$	✓ reduction/
	$=$ $\frac{\sin 23^{\circ}}{2}$	reduksie
	cos 23°	✓ answ ito/antw
	$= -\frac{\sqrt{k}}{\sqrt{1-k}} = -\sqrt{\frac{k}{1-k}}$	itv k
	$\sqrt{1-k} = -\sqrt{1-k}$	(2)
	,	
	OR/OF	
	$\tan (-23^{\circ}) = -\tan 23^{\circ}$	✓ reduction/
	$=-\frac{\sqrt{k}}{\sqrt{k}}=-\sqrt{\frac{k}{k}}$	reduksie
	$=-\frac{\sqrt{n}}{\sqrt{1-k}}=-\sqrt{\frac{n}{1-k}}$	✓ answ ito/antw
	γ1-x γ1-x	itv k
		(2)
5.2	$4\cos x.(-\sin x)$	√ cos x √- sin x
		$\checkmark \sin(\alpha + \beta)$
	$\sin(30^{\circ} - x + x)$	(w · þ)
	$=$ $\frac{-4\sin x \cdot \cos x}{}$	
	sin 30°	
	$= -4\sin x \cdot \cos x$, 1
	1	$\sqrt{\frac{1}{2}}$
	$\overline{2}$	-
	$=-8\sin x.\cos x$	✓ double sine form
	$= -4(2\sin x \cdot \cos x)$	/ dubbel sin form
		✓ answ/antw
	$=-4\sin 2x$	v answ <i>ianiw</i> (6)
		(0)
	L	<u> </u>

Compiled by XL Education

Sponsored by Anglo American Platinum

Question 6 November 2015

	•	
6.1	$f(x) = \cos x - \frac{1}{2} \text{and/en} g(x) = \sin(x + 30^\circ)$ $\therefore p = 30^\circ \text{and/en} q = -\frac{1}{2}$	$ ✓ f(x) = \cos x - \frac{1}{2} $ $ ✓ g(x) = \sin(x + 30^\circ) $ $ ✓ \text{ value of/waarde } v \text{ p} $ $ ✓ \text{ value of/waarde } v \text{ q} $
	OR/OF	(4)
	$\sin (60^{\circ} + p) = 1$ and/en $\cos 0^{\circ} + q = \frac{1}{2}$	$\sqrt{\sin(60^{\circ} + p)} = 1$
	$p = 30^{\circ} \qquad \qquad p = -\frac{1}{2}$	$\checkmark \cos 0^\circ + q = \frac{1}{2}$
		 ✓ value of/waarde v p ✓ value of/waarde v q (4)
6.2	$x \in (-120^{\circ}; 0^{\circ})$ OR/OF $-120^{\circ} < x < 0^{\circ}$	✓ critical values/ kritiese waardes ✓ correct interval/ korrekte interval (2)
6.3	The graph of g has to shift 60° to the left and then be reflected about the x-axis./Die grafiek van g moet 60° na links skuif en dan om die x-as gereflekteer word. OR/OF	✓ 60° left/links ✓ reflection about x-axis/refleksie om x-as (2)
	The graph of g must be reflected about the x-axis and then be shifted 60° to the left./Die grafiek van g moet om die x-as gereflekteer word en dan met 60° na links geskuif word.	✓ reflection about x-axis/refleksie om x-as ✓ 60° left/links (2)
	OR/OF The graph of g has to shift 120° to the right./Die grafiek van g moet 120° na regs geskuif word.	✓ ✓ 120° right/regs (2)

Question 7 November 2015

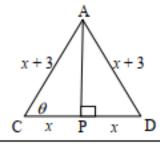
The graph of g has to shift 240° to the left./Die grafiek van g moet met 240° na links geskuif word

7.1	$\hat{CAD} = 180^{\circ} - 2\theta$ [$\angle s$	sum of ∆I∠e som van ∆]	✓ answ/antw	(1)
-----	--	------------------------	-------------	-----

√ √ 240° left/links

[8]

$\sin \theta$	$\sin(180^{\circ} - 2\theta)$
x+3	2 <i>x</i>
$\sin \theta$	$\sin 2\theta$
x+3	2x
$\sin \theta$	$2\sin\theta.\cos\theta$
x+3	2x
cos 0 -	$2x\sin\theta$
coso =	$\frac{1}{2(x+3)\sin\theta}$
	x
cos <i>θ</i> ≡	$\overline{x+3}$
	$\frac{x+3}{\sin \theta}$ $\frac{\sin \theta}{x+3}$


OR/OF

AD = x + 3 [sides opp =
$$\angle s/sye$$
 to = $\angle e$]
AC² = AD² + CD² - 2AD.CD.cos θ
 $(x+3)^2 = (x+3)^2 + (2x)^2 - 2(2x)(x+3).\cos\theta$
 $0 = 4x^2 - 4x(x+3)\cos\theta$
 $\cos\theta = \frac{4x^2}{4x(x+3)}$

OR/OF

Draw/Trek AP ⊥ CD

$$\cos \theta = \frac{x}{x+3}$$

- ✓ correct subst into sine rule/korrekte subst in sin-reël
- $\checkmark \sin 2\theta$
- $\checkmark 2 \sin \theta . \cos \theta$
- √ cos θ as subject/
 as onderwerp

- \checkmark AD = x + 3
- √ correct subst into cosine rule/korrekte subst in cos-reël
- √ simplification/
 vereenvoudiging
- √ cos θ as subject/
 as onderwerp

(4)

- √ √ constr/konstr
- √ ✓ sketch shown/
 toon skets

(4)

7.3
$$\cos \theta = \frac{2}{5}$$

 $\therefore \theta = 66,42^{\circ}$

In AABC:

$$\sin \frac{1}{2}\theta = \frac{AB}{AC}$$

$$\sin 33,21^{\circ} = \frac{AB}{5}$$

OR/OF

$$\sin \frac{\theta}{2} = \frac{AB}{5}$$

$$\therefore AB = 5 \sin \frac{\theta}{2}$$

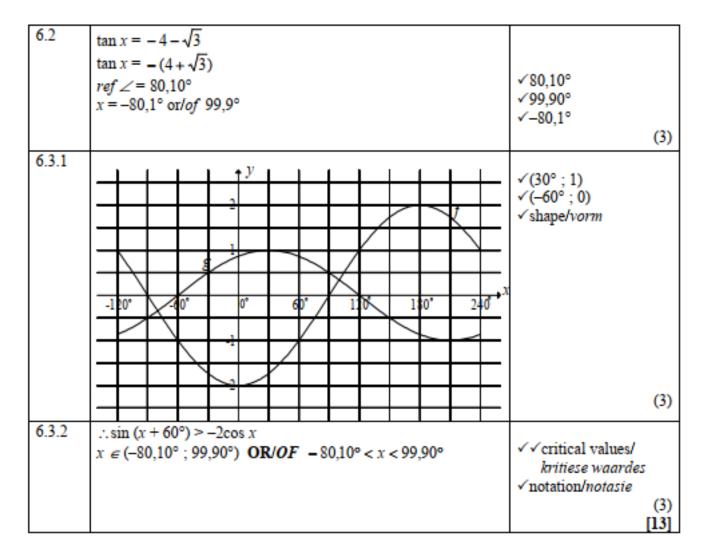
$$\sqrt{\cos\theta} = \frac{2}{5}$$

- √ size of/grootte v θ
- √ correct ratio/ korrekte verh
- √ subst correctly/
 korrek
- √ answlantw

(5)

$$\checkmark$$
 AB = 5 sin $\frac{\theta}{2}$

but/maar: $\cos \theta = \frac{2}{5}$	✓ equation/vgl
$1 - 2\sin^2\frac{\theta}{2} = \frac{2}{5}$	✓ simplification/ vereenvoudiging
$\sin^2 \frac{\theta}{2} = \frac{3}{10}$ $\sin \frac{\theta}{2} = \sqrt{\frac{3}{10}}$	✓ value of/waarde v $\sin \frac{\theta}{2}$
$\therefore AB = 5\sqrt{\frac{3}{10}} = \sqrt{\frac{15}{2}} = 2,74$	✓ answ/antw (5) [10]


Question 5 Feb March 2016

	3		
5.1.1	$\tan\theta = -\frac{3}{\sqrt{7}}$	√answ/antw	(1)
5.1.2	$\sin(-\theta) = -\sin\theta$	√reduction/	(-/
	$OP^2 = (-\sqrt{7})^2 + 3^2$	reduksie	
	$OP^2 = 16$		
	OP = 4	✓ OP = 4	
	$\sin\left(-\theta\right) = -\frac{3}{4}$	√answ/antw	(3)
5.1.3	$\frac{a}{6} = \cos 2\theta$	✓trig ratio/verh	
	$a = 6(1 - 2\sin^2\theta)$	✓ expansion/ uitbreiding	
	$=6-12\left(\frac{3}{4}\right)^2$	$\sqrt{\sin \theta} = \frac{3}{4}$	
	$=\frac{24}{4}-\frac{27}{4}$	4	
	$=-\frac{3}{4}$	√answ/antw	(1)
	OR/OF		(4)
	$\frac{a}{6} = \cos 2\theta$		
	0	✓trig ratio/verh	
	$a = 6(2\cos^2\theta - 1)$	√expansion/	
	$12(-\sqrt{7})^2$	uitbreiding	
	$=12\left(\frac{-\sqrt{7}}{4}\right)^2-6$	$\sqrt{\cos\theta} = \frac{-\sqrt{7}}{4}$	
		√ cos θ = 4	
	$=\frac{21}{4} - \frac{24}{4}$		
	$=-\frac{3}{4}$	√answ/antw	
	OR/OF		(4)

	$\frac{a}{6} = \cos 2\theta$	✓ trig ratio/verh
	$a = 6(\cos^2\theta - \sin^2\theta)$	√expansion/
		uitbreiding_
	$= 6 \left[\left(\frac{-\sqrt{7}}{4} \right)^2 - \left(\frac{3}{4} \right)^2 \right]$	$\sqrt{\cos\theta} = \frac{-\sqrt{7}}{4} \&$
	$=6\left(-\frac{2}{16}\right)$	$\sin \theta = \frac{3}{4}$
	= 0(-16)	3m 0 = 4
	$=-\frac{3}{4}$	✓ answ/antw
5.2.1	Asin v cos v 2(2 sin v cos v)	(4)
3.2.1	$\frac{4\sin x \cdot \cos x}{2\sin^2 x - 1} = \frac{2(2\sin x \cdot \cos x)}{-(1 - 2\sin^2 x)}$	
	$2\sin 2x$	✓2sin 2x
	$= \frac{2\sin 2x}{-\cos 2x}$	√-cos 2x
	$= -2 \tan 2x$	√answ/antw
		(3)
5.2.2	$\frac{4\sin 15^{\circ}\cos 15^{\circ}}{2\sin^{2}15^{\circ}-1} = -2\tan 2(15^{\circ})$	✓ - 2 tan 2(15°)
	$2\sin^2 15^\circ - 1$ = $-2 \tan 30^\circ$	
	$=-2\left(\frac{1}{\sqrt{3}}\right)$	
	$=-\frac{2}{\sqrt{3}}$ OR/OF $-\frac{2\sqrt{3}}{3}$	
	$=-\frac{1}{\sqrt{3}}$ OK/OF $-\frac{1}{3}$	✓answ/antw (2)
		[13]

Question 6 Feb March 2016

6.1	$\sin (x + 60^{\circ}) + 2\cos x = 0$ $\sin x \cos 60^{\circ} + \cos x \sin 60^{\circ} + 2\cos x = 0$	√expansion/uitbreiding
	$\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x + 2\cos x = 0$ $\frac{1}{2}\sin x = -2\cos x - \frac{\sqrt{3}}{2}\cos x$	✓ special angle values/ spesiale ∠-waardes
	$\sin x = -4\cos x - \sqrt{3}\cos x$ $\sin x = \cos x(-4 - \sqrt{3})$ $\sin x = \cos x(-4 - \sqrt{3})$	$\sqrt{\sinh x} = \cos x(-4 - \sqrt{3})$
	$\frac{\cos x}{\cos x} = \frac{\cos x}{\cot x}$ $\therefore \tan x = -4 - \sqrt{3}$	(4)

Question 7 Feb March 2016

7.1.1	Area of/Oppervlakte van $\Delta PQR = \frac{1}{2}PQ.QR.\sin \hat{Q}$	
	$= \frac{1}{2}x(20 - 4x)(\sin 60^{\circ})$ $= 10x - 2x^{2} \left(\frac{\sqrt{3}}{2}\right)$	✓ subst into area rule/ subst in opp-reël ✓ subst & simpl/ subst en vereenv (2)
7.1.2	$= 5\sqrt{3}x - \sqrt{3}x^2$ For maximum area/Vir maksimum opp:	✓(Area ∆PQR)' = 0
	$(Area \Delta PQR)' = 0$	
	$5\sqrt{3} - 2\sqrt{3}x = 0$	$\sqrt{5\sqrt{3}} - 2\sqrt{3}x$
	$2\sqrt{3}x = 5\sqrt{3}$ $\therefore x_{\text{max}} = \frac{5}{2} \text{ or } 2\frac{1}{2} \text{ or/of } 2,5$	✓ answ/antw (3)
	OR/OF	(-,
	$x_{\text{max}} = -\frac{b}{2a}$	✓ formula/e ✓ subst
	$= -\frac{5\sqrt{3}}{2(-\sqrt{3})} = \frac{5}{2} \text{ or } 2\frac{1}{2} \text{ or } 2,5$	✓answ/antw (3)

	OR/OF	
	$5\sqrt{3}x - \sqrt{3}x^2 = 0$ $\sqrt{3}x(5-x) = 0$ $\therefore x = 0 \text{ or } 5$ $\therefore x_{\text{max}} = \frac{0+5}{2} = \frac{5}{2} \text{ or/of } 2,5$	✓x-intercepts/ x-afsnitte ✓ subst ✓ answ/antw (3)
7.1.3	$RP^{2} = QP^{2} + QR^{2} - 2.QP.QR.cosQ$ $= 10^{2} + 2.5^{2} - 2(10)(2.5) cos 60^{\circ}$ $= 81.25$ $\therefore RP = 9.01$	✓ subst into cosine rule/in cos-reël ✓ simpl/vereenv ✓ answ/antw (3)
7.2	In $\triangle ABC$: $\sin \beta = \frac{h}{AB}$ $\therefore AB = \frac{h}{\sin \beta}$ In $\triangle ABD$: $AB = BD$ and/en $ADB = 90^{\circ} - \beta$ [$\angle s$ of/ v $\triangle = 180^{\circ}$] $\frac{\sin 2\beta}{AD} = \frac{\sin(90^{\circ} - \beta)}{AB}$ $AD = \frac{AB \cdot \sin 2\beta}{\sin(90^{\circ} - \beta)}$ $= \frac{h}{\sin \beta} \times \frac{2 \sin \beta \cdot \cos \beta}{\cos \beta}$ $= 2h$ OR/OF	✓ AB ito h and/en β ✓ ADB = 90° - β ✓ correct subst into cosine rule/subst korrek in cos-reël ✓ AD as subject/onderwerp ✓ expansion/uitbrei ✓ sin (90° - β) = cos β ✓ answer ito h (7)
	In $\triangle ABC$: $\sin \beta = \frac{h}{AB}$ $\therefore AB = \frac{h}{\sin \beta}$ In $\triangle ABD$: $AB = BD$ $AD^2 = AB^2 + AB^2 - 2AB \cdot AB \cdot \cos 2\beta$ $= \left(\frac{h}{\sin \beta}\right)^2 + \left(\frac{h}{\sin \beta}\right)^2 - 2\left(\frac{h}{\sin \beta}\right)^2 \cdot \cos 2\beta$ $= \left(\frac{h}{\sin \beta}\right)^2 + \left(\frac{h}{\sin \beta}\right)^2 - 2\left(\frac{h}{\sin \beta}\right)^2 (1 - 2\sin^2 \beta)$ $= \left(\frac{h}{\sin \beta}\right)^2 + \left(\frac{h}{\sin \beta}\right)^2 - 2\left(\frac{h}{\sin \beta}\right)^2 + 4h^2$ $= 4h^2$	✓ AB ito h and/en β ✓ correct subst into cosine rule/subst korrek in cos-reël ✓ expansion/uitbrei ✓ multiplication/vermenigv ✓ simpl/vereenv

OR/OF	
Split isosceles triangle ABQ into two congruent triangles AEB and DEB. Then \triangle ABC = \triangle BAE (AB = AC, ABE = BÂC = β , h) $\therefore AE = ED = BC = h$	
$\therefore AD = 2h$	(7)
	[15]

Question 5

May June 2016

5.1.1(a)	$\sqrt{5}$ 5 5, 13	√value (1)
5.1.1(b)	$\cos S = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10} = 0.95$	√value (1)
5.1.2	cos(T+S) = cos T cos S - sin T sin S	√expansion
	$= \left(\frac{2}{\sqrt{5}}\right)\left(\frac{3}{\sqrt{10}}\right) - \left(\frac{1}{\sqrt{5}}\right)\left(\frac{1}{\sqrt{10}}\right)$	$\checkmark \frac{2}{\sqrt{5}} \checkmark \frac{1}{\sqrt{10}}$
	$=\frac{6}{\sqrt{50}}-\frac{1}{\sqrt{50}}$	✓ simplification
	$= \frac{5}{\sqrt{50}} \text{ or } \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2}$	✓ answer (5)
5.2	$\frac{1}{\cos(360^{\circ} - \theta)\sin(90^{\circ} - \theta)} - \tan^2(180^{\circ} + \theta)$	
	1 2 2	√ cos θ
	$= \frac{1}{(\cos \theta)(\cos \theta)} - \tan^2 \theta$	$\sqrt{\cos\theta}$ $\sqrt{\tan^2\theta}$
	$= \frac{1}{\cos^2 \theta} - \left(\frac{\sin^2 \theta}{\cos^2 \theta}\right)$	$\sqrt{\frac{\sin^2\theta}{\cos^2\theta}}$
	$=\frac{1-\sin^2\theta}{\cos^2\theta}$	
		✓identity
	$= \frac{\cos^2 \theta}{\cos^2 \theta} OR \frac{1 - \sin^2 \theta}{1 - \sin^2 \theta}$	✓ answer
	=1	(6)

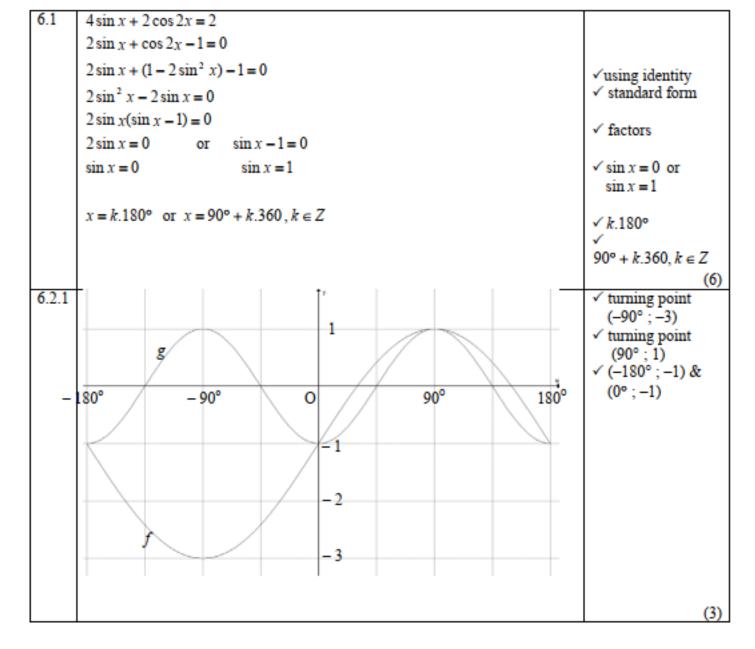
5.3
$$(\sin x - \cos x)^2 = \left(\frac{3}{4}\right)^2$$

$$\sin^2 x - 2\sin x \cos x + \cos^2 x = \frac{9}{16}$$

$$1 - 2\sin x \cos x = \frac{9}{16}$$

$$2\sin x \cos x = \frac{7}{16}$$

$$\sin 2x = \frac{7}{16}$$


$$\sin 2x = \frac{7}{16}$$

$$\sin 2x = \frac{7}{16}$$

$$(5)$$
[18]

Question 6

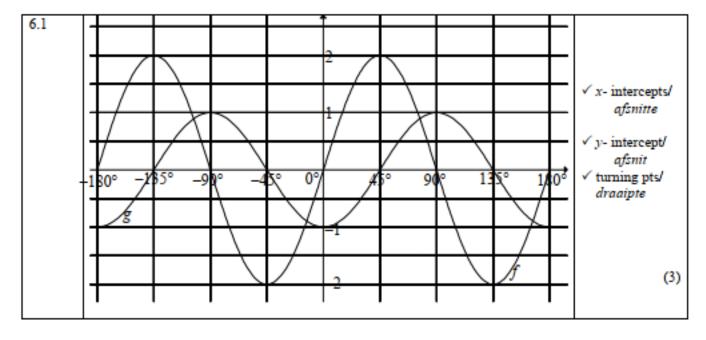
May June 2016

6.2.2	(-90°;0°)	✓ ✓ answer
	OR/OF	(2) ✓ ✓ answer
	- 90° < x < 0°	(2)
6.2.3	f(x) = g(x) $\therefore -180^{\circ}; 0^{\circ}; 90^{\circ}; 180^{\circ}$	
	$f(x + 30^\circ) = g(x + 30^\circ)$ $\therefore x = -30^\circ; 60^\circ; 150^\circ$	✓ any ONE correct ✓ other 2 correct (2) [13]

Question 7

May June 2016

7.1	$\hat{ABD} = \theta$ [alternate $\angle s$; lines]	
	$\cos \theta = \frac{BD}{AB} = \frac{64}{81}$ $\theta = 38^{\circ}$	✓ correct trig ratio ✓ substitution into correct ratio ✓ answer (to the
	OR/ OF	nearest degree) (3)
	$\sin B\hat{A}D = \frac{64}{81}$	✓ correct trig ratio ✓ substitution into
	BÂD = 52,18°	correct ratio
	θ = 38°	✓ answer (to the nearest degree) (3)
7.2	$BC^2 = AB^2 + AC^2 - 2(AB)(AC)\cos BAC$	✓ use cosine rule ✓ correct substitution
	$= 81^2 + 87^2 - 2(81)(87) \cos 82,6^\circ$	into cosine rule
	= 12314,754	_
	BC = 110,97 m	✓answer (3)
7.3	$\frac{\sin D\hat{C}B}{BD} = \frac{\sin B\hat{D}C}{BC}$	✓ use sine rule
	$\sin D\hat{C}B = \frac{BD.\sin B\hat{D}C}{BC}$ $\sin D\hat{C}B = \frac{64.\sin 110^{\circ}}{110.97}$	✓ substitution
	∴ DĈB = 32,82°	✓ answer

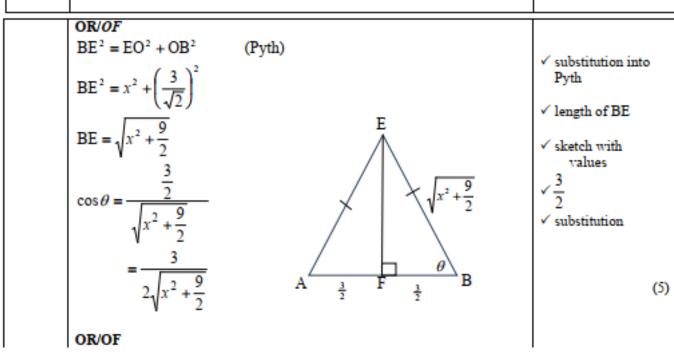

Question 5 November 2016

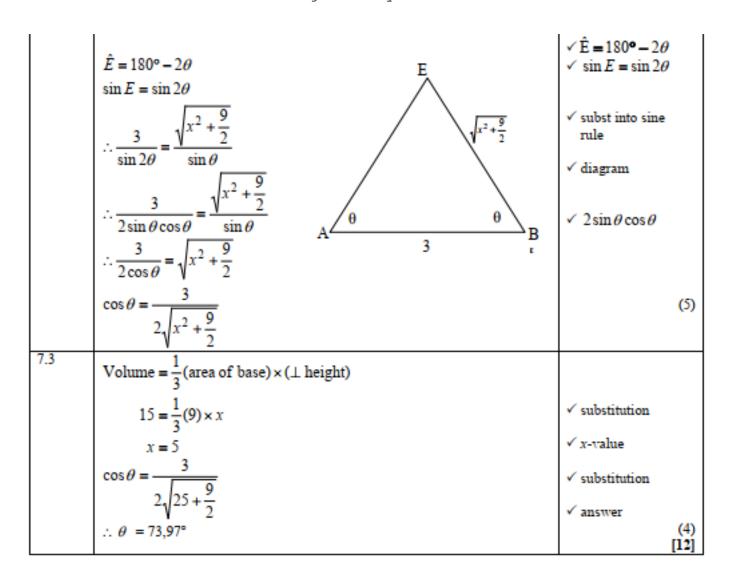
5.1.2 $\cos 16^{\circ} = \sqrt{1-\sin^{2}16^{\circ}}$ $= \sqrt{1-p^{2}}$ OR/OF $x^{2} + p^{2} = 1$ $x = \sqrt{1-p^{2}}$ $x = 1-p^{$	5.1.1	$\sin 196^{\circ} = -\sin 16^{\circ}$	√reduction	
5.1.2 $\cos 16^{\circ} = \sqrt{1-\sin^{2}16^{\circ}}$ $= \sqrt{1-p^{2}}$ $\cos 16^{\circ} = \sqrt{1-p^{2}}$ \cos		=-p		
$= \sqrt{1 - p^{2}}$ OR/OF $x^{2} + p^{2} = 1$ $x = \sqrt{1 - p^{2}}$ $\cos(6^{\circ}) = \sqrt{1 - p^{2}}$ $\cos(6^{$		<u> </u>		(2)
	5.1.2	$\cos 16^{\circ} = \sqrt{1 - \sin^2 16^{\circ}}$		
OR/OF $x^2 + p^2 = 1$ $x = \sqrt{1 - p^2}$ $x = \cos(90^\circ - (A + B))$ $= \cos(90^\circ - A) - B$ $= \cos(90^\circ - A) - B$ $= \sin A \cos B + \cos A \sin B$ 5.3 $\sqrt{1 - \cos^2 2A}$ $\cos(-A) \cos(90^\circ + A)$ $= \frac{\sin 2A}{\cos A - (-\sin A)}$ $= \frac{\sin 2A}{\cos A - (-\sin A)}$ $= -2$ OR/OF $\sqrt{1 - (\cos^2 2A)}$ $\cos(-A) \cos(90^\circ + A)$ $= -2$ OR/OF $\sqrt{1 - (\cos^2 2A)}$ $\cos(-A) \cos(90^\circ + A)$ $= -2$ $\sqrt{1 - (\cos^2 2A)}$ $\cos(-A) \cos(90^\circ + A)$ $= -2$ $\sqrt{1 - (\cos^2 2A)}$ $\cos(-A) \cos(90^\circ + A)$ $= -2$ $\sqrt{1 - (\cos^2 2A)}$ $\cos(-A) \cos(90^\circ + A)$ $= -2$ OR/OF $\sqrt{1 - (\cos^2 2A)}$ $\cos(-A) \cos(90^\circ + A)$ $= -2$ $\sqrt{1 - (\cos^2 2A)}$ $\cos(-A) \cos(90^\circ + A)$ $= -2$ $\sqrt{1 - (\cos^2 2A)}$ $\cos(-A) \cos(90^\circ + A)$ $\cos(-A) \cos(-A) \cos(-A)$ $\cos(-A) \cos(-A)$		$= \sqrt{1-p^2}$	v answer	(2)
$x^{2} + p^{2} = 1$ $x = \sqrt{1 - p^{2}}$ $\cos 16^{\circ} = \frac{\sqrt{1 - p^{2}}}{1} = \sqrt{1 - p^{2}}$ $5.2 \sin(A + B) = \cos(90^{\circ} - (A + B))$ $= \cos(90^{\circ} - A) - B = \cos(90^{\circ} - A) - B = \sin A \cos B + \cos A \sin B$ $5.3 \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(-A) \cos(90^{\circ} + A)}$ $= \frac{\sqrt{\sin^{2} 2A}}{\cos(A(-\sin A))}$ $= \frac{\sin 2A}{\cos A(-\sin A)}$ $= \frac{2\sin A \cos A}{\cos A(-\sin A)}$ $= -2$ $0R/OF$ $\frac{\sqrt{1 - \cos^{2} 2A}}{\cos(-A) \cos(90^{\circ} + A)} = \frac{\sqrt{1 - (2\cos^{2} A - 1)^{2}}}{\cos A(-\sin A)}$ $= -2$ $0R/OF$ $\frac{\sqrt{1 - (4\cos^{2} A - 4\cos^{2} A + 1)}}{\cos A(-\sin A)} = \frac{\sqrt{4\cos^{2} A - 4\cos^{4} A}}{\cos A(-\sin A)}$ $= \frac{\sqrt{4\cos^{2} A(1 - \cos^{2} A)}}{\cos A(-\sin A)} = \frac{\sqrt{4\cos^{2} A - 4\cos^{4} A}}{\cos A(-\sin A)}$ $= \frac{\sqrt{4\cos^{2} A(1 - \cos^{2} A)}}{\cos A(-\sin A)} = \frac{\sqrt{4\cos^{2} A - 4\cos^{4} A}}{\cos A(-\sin A)}$ $= \frac{\sqrt{2\cos^{2} A - 1}}{\cos A(-\sin A)}$ $= \frac{\sqrt{4\cos^{2} A(1 - \cos^{2} A)}}{\cos A(-\sin A)} = \frac{\sqrt{4\cos^{2} A - 4\cos^{4} A}}{\cos A(-\sin A)}$ $= \frac{2\cos A \sin A}{\cos A(-\sin A)} = \frac{\sqrt{4\cos^{2} A - 4\cos^{4} A}}{\cos A(-\sin A)}$ $= \frac{2\cos A \sin A}{\cos A(-\sin A)} = \frac{\sqrt{4\cos^{2} A - 4\cos^{4} A}}{\cos A(-\sin A)}$ $= \frac{2\cos A \sin A}{\cos A(-\sin A)} = \frac{\sqrt{4\cos^{2} A - 4\cos^{4} A}}{\cos A(-\sin A)}$ $= \frac{2\cos A \sin A}{\cos A(-\sin A)} = \frac{\sqrt{4\cos^{2} A - 4\cos^{4} A}}{\cos A(-\sin A)}$ $= \frac{2\cos A \sin A}{\cos A(-\sin A)} = \frac{\sqrt{4\cos^{2} A - 4\cos^{4} A}}{\cos A(-\sin A)}$ $= \frac{\sqrt{4\cos^{2} A - 3\sin^{2} A}}{\cos A(-\sin A)}$ $= \frac{\sqrt{4\cos^{2} A - 3\cos^{2} A}}{\cos^{2} A(-\cos^{2} A)}$ $= \frac{\sqrt{4\cos^{2} A - 3\cos^{2} A}}{\cos^{2} A(-\cos^{2} A)}$ $= \frac{\sqrt{4\cos^{2} A - 3\cos^{2} A}}{\cos^{2} A - 3\cos^{2} A}$ $= \frac{\sqrt{3\cos^{2} A - 3\cos^{2} A}}{\cos^{2} A - 3\cos^{2} A}$ $= \frac{\sqrt{3\cos^{2} A - 3\cos^{2} A}}{\cos^{2} A - 3\cos^{2} A}$ $= \frac{\sqrt{3\cos^{2} A - 3\cos^{2} A}}{\cos^{2} A - 3\cos^{2} A}$ $= \frac{\sqrt{3\cos^{2} A - 3\cos^{2} A}}{\cos^{2} A - 3\cos^{2} A}$ $= \frac{\sqrt{3\cos^{2} A - 3\cos^{2} A}}{\cos^{2} A$		l ' -		(-/
$x = \sqrt{1 - p^{2}}$ $x = \sqrt{1 - p^{2}}$ $x = \sqrt{1 - p^{2}}$ $x = \cos(90^{\circ} - (A + B))$ $= \cos(90^{\circ} - A) - B = \cos(90^{\circ} - A) - B = \cos(90^{\circ} - A) - B = \sin(A \cos B + \cos A \sin B)$ $= \sin(A \cos B) + \cos(A \sin B)$ $= \sin(A \cos A) + \cos(A \cos B) + \cos(A \cos B)$ $= \sin(A \cos A) + \cos(A \cos B) + \cos(A \cos B)$ $= \frac{\sin(A \cos A)}{\cos(A \cos(90^{\circ} + A))}$ $= \frac{\sin(A \cos A)}{\cos(A \cos(-3\sin A))}$ $= \frac{\sin(A \cos A)}{\cos(A \cos(90^{\circ} + A))}$ $= \frac{\sin(A \cos(90^{\circ} + A))}{\cos(A \cos(90^{\circ} + A)}$ $= \frac{\sin(A \cos(90^{\circ} + A)}{\cos(A \cos(90^{\circ} + A)}$ $= \sin$				
$x = \sqrt{1 - p^{2}}$ $\therefore \cos 16^{\circ} = \frac{\sqrt{1 - p^{2}}}{1} = \sqrt{1 - p^{2}}$ $5.2 \sin(A + B) = \cos[90^{\circ} - (A + B)]$ $= \cos[(90^{\circ} - A) - B]$ $= \cos(90^{\circ} - A) \cos B + \sin(90^{\circ} - A) \sin B$ $= \sin A \cos B + \cos A \sin B$ $5.3 \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(A) \cdot \cos(90^{\circ} + A)}$ $= \frac{\sqrt{\sin^{2} 2A}}{\cos(A \cdot - \sin A)}$ $= \frac{\sin 2A}{\cos(A \cdot - \sin A)}$ $= \frac{2 \sin A \cos A}{\cos(A \cdot - \sin A)}$ $= -2$ OR/OF $\frac{\sqrt{1 - \cos^{2} 2A}}{\cos(A - \cos(90^{\circ} + A)} = \frac{\sqrt{1 - (2\cos^{2} A - 1)^{2}}}{\cos(A - \sin A)}$ $= \frac{\sqrt{1 - (4\cos^{2} A - 4\cos^{2} A + 1)}}{\cos(A - \sin A)} = \frac{\sqrt{4\cos^{2} A - 4\cos^{4} A}}{\cos(A - \sin A)}$ $= \frac{\sqrt{4\cos^{2} A(1 - \cos^{2} A)}}{\cos(A - \sin A)} = \frac{\sqrt{4\cos^{2} A - 3\sin A}}{\cos(A - \sin A)}$ $= \frac{2\cos A \cdot \sin A}{\cos(A - \sin A)} = \frac{\sqrt{4\cos^{2} A - 3\sin A}}{\cos(A - \sin A)}$ $= \frac{2\cos A \cdot \sin A}{\cos(A - \sin A)} = \frac{\sqrt{4\cos^{2} A - 3\sin A}}{\cos(A - \sin A)}$ $= \frac{2\cos A \cdot \sin A}{\cos(A - \sin A)} = \frac{\sqrt{4\cos^{2} A - 3\sin^{2} A}}{\cos(A - \sin A)}$ $= \frac{2\cos A \cdot \sin A}{\cos(A - \sin A)} = \frac{\sqrt{4\cos^{2} A - 3\sin^{2} A}}{\cos(A - \sin A)}$ $= \frac{2\cos A \cdot \sin A}{\cos(A - \sin A)} = \frac{\sqrt{4\cos^{2} A - 3\sin^{2} A}}{\cos(A - \sin A)}$ $= -2$ (5)		$x^2 + p^2 = 1$	√x in terms of n	
$ \begin{array}{c} $		$y = \sqrt{1 - n^2}$ 16°		
5.2 $\sin(A + B) = \cos[90^{\circ} - (A + B)]$ $= \cos[(90^{\circ} - A) - B]$ $= \cos((90^{\circ} - A) - B)]$ $= \cos((90^{\circ} - A) - B)$ $= \sin(A \cos B) + \sin(90^{\circ} - A) \sin B$ $= \sin(A \cos B) + \cos(A) \sin B$ (3) 5.3 $\frac{\sqrt{1 - \cos^2 2A}}{\cos(A - \cos(A) \cos(90^{\circ} + A)}$ $= \frac{\sqrt{\sin^2 2A}}{\cos(A - \sin(A))}$ $= \frac{\sin 2A}{\cos(A - \sin(A))}$ $= \frac{2 \sin A \cos A}{\cos(A - \sin(A))}$ $= -2$ (5) OR/OF $\frac{\sqrt{1 - \cos^2 2A}}{\cos(A - \cos(90^{\circ} + A))} = \frac{\sqrt{1 - (2\cos^2 A - 1)^2}}{\cos(A - \sin(A))}$ $= \frac{\sqrt{1 - (4\cos^4 A - 4\cos^2 A + 1)}}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos(A - \sin(A))}$ $= \frac{\sqrt{4\cos^2 A}(1 - \cos^2 A)}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 4\cos^4 A}{\cos(A - \sin(A))}$ $= \frac{\sqrt{4\cos^2 A}(1 - \cos^2 A)}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 4\cos^4 A}{\cos(A - \sin(A))}$ $= \frac{2\cos(A \sin(A))}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 4\cos^4 A}{\cos(A - \sin(A))}$ $= \frac{2\cos(A \sin(A))}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 4\cos^4 A}{\cos(A - \sin(A))}$ $= \frac{2\cos(A \sin(A))}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 3\sin(A)}{\cos(A - \sin(A))}$ $= \frac{2\cos(A \sin(A))}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 3\sin(A)}{\cos(A - \sin(A))}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A))}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A)}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A))}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A))}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A)}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A)}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A)}$ $= \frac{\cos(A)}{\cos(A)}$ $= \frac{\cos(A)}{\cos(A)}$ $= \frac{\cos(A)}{\cos(A)}$ $= \frac{\cos(A)}{\cos($		x=v1-p	/	
5.2 $\sin(A + B) = \cos[90^{\circ} - (A + B)]$ $= \cos[(90^{\circ} - A) - B]$ $= \cos((90^{\circ} - A) - B)]$ $= \cos((90^{\circ} - A) - B)$ $= \sin(A \cos B) + \sin(90^{\circ} - A) \sin B$ $= \sin(A \cos B) + \cos(A) \sin B$ (3) 5.3 $\frac{\sqrt{1 - \cos^2 2A}}{\cos(A - \cos(A) \cos(90^{\circ} + A)}$ $= \frac{\sqrt{\sin^2 2A}}{\cos(A - \sin(A))}$ $= \frac{\sin 2A}{\cos(A - \sin(A))}$ $= \frac{2 \sin A \cos A}{\cos(A - \sin(A))}$ $= -2$ (5) OR/OF $\frac{\sqrt{1 - \cos^2 2A}}{\cos(A - \cos(90^{\circ} + A))} = \frac{\sqrt{1 - (2\cos^2 A - 1)^2}}{\cos(A - \sin(A))}$ $= \frac{\sqrt{1 - (4\cos^4 A - 4\cos^2 A + 1)}}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos(A - \sin(A))}$ $= \frac{\sqrt{4\cos^2 A}(1 - \cos^2 A)}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 4\cos^4 A}{\cos(A - \sin(A))}$ $= \frac{\sqrt{4\cos^2 A}(1 - \cos^2 A)}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 4\cos^4 A}{\cos(A - \sin(A))}$ $= \frac{2\cos(A \sin(A))}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 4\cos^4 A}{\cos(A - \sin(A))}$ $= \frac{2\cos(A \sin(A))}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 4\cos^4 A}{\cos(A - \sin(A))}$ $= \frac{2\cos(A \sin(A))}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 3\sin(A)}{\cos(A - \sin(A))}$ $= \frac{2\cos(A \sin(A))}{\cos(A - \sin(A))} = \frac{\sqrt{4\cos^2 A} - 3\sin(A)}{\cos(A - \sin(A))}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A))}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A)}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A))}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A))}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A)}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A)}$ $= \frac{\sqrt{4\cos^2 A} - 3\cos(A)}{\cos(A - \cos(A)}$ $= \frac{\cos(A)}{\cos(A)}$ $= \frac{\cos(A)}{\cos(A)}$ $= \frac{\cos(A)}{\cos(A)}$ $= \frac{\cos(A)}{\cos($		$\cos 16^{\circ} = \frac{\sqrt{1-p^2}}{\sqrt{1-p^2}} = \sqrt{1-p^2}$	v answer	(2)
$= \cos[(90^{\circ} - A) - B]$ $= \cos(90^{\circ} - A)\cos B + \sin(90^{\circ} - A)\sin B$ $= \sin A\cos B + \cos A\sin B$ 5.3 $\frac{\sqrt{1 - \cos^{2} 2A}}{\cos(-A) \cos(90^{\circ} + A)}$ $= \frac{\sin 2A}{\cos A.(-\sin A)}$ $= \frac{2\sin A\cos A}{\cos A.(-\sin A)}$ $= -2$ OR/OF $\frac{\sqrt{1 - \cos^{2} 2A}}{\cos(-A)\cos(90^{\circ} + A)} = \frac{\sqrt{1 - (2\cos^{2} A - 1)^{2}}}{\cos A \sin A}$ $= \frac{\sqrt{1 - (4\cos^{4} A - 4\cos^{2} A + 1)}}{\cos A \sin A} = \frac{\sqrt{4\cos^{2} A \sin^{2} A}}{\cos A \sin A}$ $= \frac{\sqrt{4\cos^{2} A(1 - \cos^{2} A)}}{\cos A \sin A} = \frac{\sqrt{4\cos^{2} A \sin^{2} A}}{\cos A \sin A}$ $= \frac{2\cos A. \sin A}{\cos A \sin A} = \frac{\sqrt{4\cos^{2} A \sin^{2} A}}{\cos A \sin A}$ $= \frac{2\cos A. \sin A}{\cos A \sin A}$ $= -2$ (5)		<u> </u>		(-)
$= \cos(90^{\circ} - A)\cos B + \sin(90^{\circ} - A)\sin B$ $= \sin A\cos B + \cos A\sin B$ $= \sin A\cos B + \cos A\sin B$ $= \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(A - A)\cos(90^{\circ} + A)}$ $= \frac{\sqrt{\sin^{2} 2A}}{\cos(A - (-\sin A))}$ $= \frac{2\sin A\cos A}{\cos(A - (-\sin A))}$ $= \frac{2\sin A\cos A}{\cos(A - (-\sin A))}$ $= -2$ $= \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(A - (-\sin A))}$ $= -2$ $= \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(A - (-\sin A))}$ $= -2$ $= \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(A - (-\sin A))}$ $= -2$ $= \frac{\sqrt{1 - (\cos^{2} 2A - 1)^{2}}}{\cos(A - \sin A)}$ $= \frac{\sqrt{1 - (4\cos^{4} A - 4\cos^{2} A + 1)}}{\cos(A - \sin A)}$ $= \frac{\sqrt{4\cos^{2} A(1 - \cos^{2} A)}}{\cos(A - \sin A)}$ $= \frac{\sqrt{4\cos^{2} A(1 - \cos^{2} A)}}{\cos(A - \sin A)}$ $= \frac{\sqrt{4\cos^{2} A(1 - \cos^{2} A)}}{\cos(A - \sin A)}$ $= \frac{\sqrt{4\cos^{2} A\sin A}}{\cos(A -$	5.2	1		
$= \sin A \cos B + \cos A \sin B$ $= \sin A \cos B + \cos A \sin B$ $= \sin A \cos B + \cos A \sin B$ $= \frac{\sqrt{1 - \cos^2 2A}}{\cos(A) - \cos(A) - \cos(A)}$ $= \frac{\sin 2A}{\cos(A) - \sin(A)}$ $= -2$ $= \frac{\sqrt{1 - \cos^2 2A}}{\cos(A - \sin(A))}$ $= -2$ $= \frac{\sqrt{1 - \cos^2 2A}}{\cos(A - \cos(A) - \sin(A))}$ $= -2$ $= \frac{\sqrt{1 - \cos^2 2A}}{\cos(A - \cos(A) - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - \cos^2 2A}}{\cos(A - \cos(A) - \cos(A) - \sin(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A) - \sin(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \cos(A) - \cos(A)}$ $= \frac{\sqrt{1 - (\cos^2 2A)}}{\cos(A - \sin(A)}$ $= \frac{\sqrt{1 - (\cos^2 A)}}{\cos(A - \sin(A)}$ $= \sqrt{1 - (\cos^2 A$				
$ \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(-A) \cdot \cos(90^{\circ} + A)} $ $ = \frac{\sqrt{\sin^{2} 2A}}{\cos(A) \cdot \cos(A)} $ $ = \frac{\sin 2A}{\cos(A) \cdot \sin(A)} $ $ = \frac{2\sin A\cos A}{\cos(A) \cdot \sin(A)} $ $ = -2 $ OR/OF $ \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(A) \cdot \cos(A)} $ $ = -2 $ OR/OF $ \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(A) \cdot \cos(A) \cdot \sin(A)} $ $ = -2 $ $ \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(A) \cdot \sin(A)} $ $ = -2 $ $ \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(A) \cdot \sin(A)} $ $ = -2 $ $ \frac{\sqrt{1 - \cos^{2} 2A}}{\cos(A) \cdot \sin(A)} $ $ = \frac{\sqrt{1 - (\cos^{2} 2A)}}{\cos(A) \cdot \sin(A)} $ $ = \frac{\sqrt{1 - (\cos^{2} A)}}{\cos(A) \cdot \sin(A)} $ $ = \frac{\sqrt{1 - (\cos^{2} A)}}{\cos(A) \cdot \sin(A)} $ $ = \frac{\sqrt{1 - (\cos^{2} A)}}{\cos(A) \cdot \sin(A)} $ $ = \frac{\sqrt{1 - (\cos^{2} A)}}{\cos$			expansion	(3)
$\frac{\sqrt{1-\cos^{2}2A}}{\cos(-A).\cos(90^{\circ}+A)}$ =\frac{\sin^{2}2A}{\cosA.(-\sinA)} =\frac{\sin^{2}2A}{\cosA.(-\sinA)} =\frac{\sin^{2}2A}{\cosA.(-\sinA)} =\frac{2\sin A\cos A}{\cos A.(-\sinA)} =\frac{2\sin A\cos A}{\cos A.(-\sinA)} =-2 OR/OF $\frac{\sqrt{1-\cos^{2}2A}}{\cos(-A)\cos(90^{\circ}+A)} = \frac{\sqrt{1-(2\cos^{2}A-1)^{2}}}{\cos A\sin A} =\frac{\sqrt{1-(4\cos^{4}A-4\cos^{2}A+1)}}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A-4\cos^{4}A}}{\cos A\sin A} =\frac{\sqrt{4\cos^{2}A(1-\cos^{2}A)}}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A-4\cos^{4}A}}{\cos A\sin A} =\frac{2\cos A.\sin A}{\cos A\sin A} =\frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A} =\frac{2\cos A.\sin A}{\cos A\sin A} =\frac{2\cos A.\sin A}{\cos A\sin A} =\frac{3\cos A.\sin A}{\cos A\sin A} =\frac{2\cos A.\sin A}{\cos A\sin A} =\frac{3\cos A.\sin A}{\cos A.\sin A}{\cos A\sin A} =\frac{3\cos A.\sin A}{\cos A.\sin A.$	5.3			• •
$= \frac{\sqrt{\sin^2 2A}}{\cos A.(-\sin A)}$ $= \frac{\sin 2A}{\cos A.(-\sin A)}$ $= \frac{2\sin A\cos A}{\cos A.(-\sin A)}$ $= -2$ $= \frac{\sqrt{1-\cos^2 2A}}{\cos(-A)\cos(90^\circ + A)} = \frac{\sqrt{1-(2\cos^2 A - 1)^2}}{\cos A\sin A}$ $= \frac{\sqrt{1-(4\cos^4 A - 4\cos^2 A + 1)}}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos A\sin A}$ $= \frac{\sqrt{4\cos^2 A(1-\cos^2 A)}}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\cos A\cos A}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\cos A\cos A}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\cos A\cos A}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\cos A\cos A}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\cos A\cos A}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\cos A\cos A}{\cos A\cos A}$ $= \frac{\cos A\sin A}{\cos A\sin A}$ $= \frac{\cos A\cos A}{\cos A\sin A}{\cos A\cos A}$ $= \frac{\cos A\cos A}{\cos A\cos A}{\cos A\cos A}{\cos A}{\cos A}{\cos A}{\cos A}{\cos A}{\cos A}{\cos A}{$	3.3			
$= \frac{\sin 2A}{\cos A.(-\sin A)}$ $= \frac{\sin 2A}{\cos A.(-\sin A)}$ $= \frac{2\sin A\cos A}{\cos A.(-\sin A)}$ $= -2$ $= -2$ $= \frac{\sqrt{1-\cos^2 2A}}{\cos(-A)\cos(90^{\circ} + A)} = \frac{\sqrt{1-(2\cos^2 A - 1)^2}}{\cos A\sin A}$ $= \frac{\sqrt{1-(4\cos^4 A - 4\cos^2 A + 1)}}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos A\sin A}$ $= \frac{\sqrt{4\cos^2 A(1-\cos^2 A)}}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{3\cos A.\cos A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos A\sin A}$ $= \sqrt{4\cos^2 A.\cos^2 $		$cos(-A).cos(90^{\circ} + A)$		
$= \frac{\sin 2A}{\cos A.(-\sin A)}$ $= \frac{2\sin A\cos A}{\cos A.(-\sin A)}$ $= -2$ $\frac{\sqrt{1-\cos^{2}2A}}{\cos(-A)\cos(90^{\circ}+A)} = \frac{\sqrt{1-(2\cos^{2}A-1)^{2}}}{\cos A\sin A}$ $= \frac{\sqrt{1-(4\cos^{4}A-4\cos^{2}A+1)}}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A-4\cos^{4}A}}{\cos A\sin A}$ $= \frac{\sqrt{4\cos^{2}A(1-\cos^{2}A)}}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\cos A\sin A}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\cos A\cos A}{\cos A\sin A}$ $= \frac{\cos A\sin A}{\cos A\sin A} = \frac{\cos A\cos A}{\cos A\sin A}$ $= \frac{\cos A\cos A\cos A}{\cos A\cos A} = \frac{\cos A\cos A}{\cos A\cos A} = \frac{\cos A\cos A}{\cos A\cos A}$ $= \frac{\cos A\cos A\cos A}{\cos A\cos A} = \frac{\cos A\cos A}{\cos $		$\sqrt{\sin^2 2A}$	$\sqrt{\sin^2 2A}$	
$= \frac{2\sin A\cos A}{\cos A.(-\sin A)}$ $= \frac{2\sin A\cos A}{\cos A.(-\sin A)}$ $= -2$ $\frac{\sqrt{1-\cos^2 2A}}{\cos(-A)\cos(90^\circ + A)} = \frac{\sqrt{1-(2\cos^2 A - 1)^2}}{\cos A\sin A}$ $= \frac{\sqrt{1-(4\cos^4 A - 4\cos^2 A + 1)}}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos A\sin A}$ $= \frac{\sqrt{4\cos^2 A(1-\cos^2 A)}}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A}$ $= -2$ (5)		$={\cos A.(-\sin A)}$	✓ cosA ✓ – sin/	A
$= \frac{2\sin A\cos A}{\cos A.(-\sin A)}$ $= -2$ $\sqrt{1-\cos^2 2A}$ $\cos(-A)\cos(90^\circ + A) = \frac{\sqrt{1-(2\cos^2 A - 1)^2}}{\cos A\sin A}$ $= \frac{\sqrt{1-(4\cos^4 A - 4\cos^2 A + 1)}}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos A\sin A}$ $= \frac{\sqrt{4\cos^2 A(1-\cos^2 A)}}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A}$ $= -2$ (5)		sin 2A		
$= \frac{2\sin A\cos A}{\cos A.(-\sin A)}$ $= -2$ $\sqrt{1-\cos^2 2A}$ $\cos(-A)\cos(90^\circ + A) = \frac{\sqrt{1-(2\cos^2 A - 1)^2}}{\cos A\sin A}$ $= \frac{\sqrt{1-(4\cos^4 A - 4\cos^2 A + 1)}}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos A\sin A}$ $= \frac{\sqrt{4\cos^2 A(1-\cos^2 A)}}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A}$ $= -2$ (5)		$={\cos A.(-\sin A)}$		
$cosA.(-sinA)$ =-2 OR/OF $\frac{\sqrt{1-\cos^2 2A}}{\cos(-A)\cos(90^\circ + A)} = \frac{\sqrt{1-(2\cos^2 A - 1)^2}}{\cos A sinA}$ $= \frac{\sqrt{1-(4\cos^4 A - 4\cos^2 A + 1)}}{\cos A sinA} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos A sinA}$ $= \frac{\sqrt{4\cos^2 A(1-\cos^2 A)}}{\cos A sinA} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A sinA}$ $= \frac{2\cos A. \sin A}{\cos A \sin A}$ $= \frac{2\cos A. \sin A}{\cos A \sin A}$ $= \frac{2\cos A. \sin A}{\cos A \sin A}$ $= -2$ (5)			✓2sinAcosA	
OR/OF $ \frac{\sqrt{1-\cos^{2}2A}}{\cos(-A)\cos(90^{\circ}+A)} = \frac{\sqrt{1-(2\cos^{2}A-1)^{2}}}{\cos A - \sin A} $ $= \frac{\sqrt{1-(4\cos^{4}A - 4\cos^{2}A + 1)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^{2}A - 4\cos^{4}A}}{\cos A - \sin A}$ $= \frac{\sqrt{4\cos^{2}A(1-\cos^{2}A)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A - \sin A}$ $= \frac{2\cos A \cdot \sin A}{\cos A - \sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A - \sin A}$ $= \frac{2\cos A \cdot \sin A}{\cos A - \sin A}$ $= -2$ (5)		$=\frac{-\cos A \left(-\sin A\right)}{\cos A \left(-\sin A\right)}$		
OR/OF $ \frac{\sqrt{1-\cos^{2}2A}}{\cos(-A)\cos(90^{\circ}+A)} = \frac{\sqrt{1-(2\cos^{2}A-1)^{2}}}{\cos A\sin A} $ $= \frac{\sqrt{1-(4\cos^{4}A-4\cos^{2}A+1)}}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A-4\cos^{4}A}}{\cos A\sin A}$ $= \frac{\sqrt{4\cos^{2}A(1-\cos^{2}A)}}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A\sin A}$ $= \frac{2\cos A.\sin A}{\cos A\sin A}$ $= -2$ / identity Answer (5)			✓ answer	155
$\frac{\sqrt{1-\cos^2 2A}}{\cos(-A)\cos(90^{\circ}+A)} = \frac{\sqrt{1-(2\cos^2 A - 1)^2}}{\cos A - \sin A}$ $= \frac{\sqrt{1-(4\cos^4 A - 4\cos^2 A + 1)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos A - \sin A}$ $= \frac{\sqrt{4\cos^2 A(1-\cos^2 A)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A - \sin A}$ $= \frac{2\cos A \cdot \sin A}{\cos A - \sin A}$ $= \frac{2\cos A \cdot \sin A}{\cos A - \sin A}$ $= \frac{2\cos A \cdot \sin A}{\cos A - \sin A}$ $= \frac{3\cos A \cdot \sin A}{\cos A}$ $= \frac{3\cos A}{\cos A}$ $= \frac{3\cos A}{\cos A}$ $= \frac{3\cos A}{\cos A}$ $= \frac{3\cos A}{\cos A}$ $= 3$				(5)
$ \cos(-A)\cos(90^{\circ} + A) = \cos A - \sin A $ $ = \frac{\sqrt{1 - (4\cos^{4}A - 4\cos^{2}A + 1)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^{2}A - 4\cos^{4}A}}{\cos A - \sin A} $ $ = \frac{\sqrt{4\cos^{2}A(1 - \cos^{2}A)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A - \sin A} $ $ = \frac{2\cos A \cdot \sin A}{\cos A - \sin A} $ $ = \frac{2\cos A \cdot \sin A}{\cos A - \sin A} $ $ = \frac{2\cos A \cdot \sin A}{\cos A - \sin A} $ $ = \frac{-2\cos A \cdot \sin A}{\cos A - \sin A} $ $ = -2 (5) $		OR/OF		
$ \cos(-A)\cos(90^{\circ} + A) = \cos A - \sin A $ $ = \frac{\sqrt{1 - (4\cos^{4}A - 4\cos^{2}A + 1)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^{2}A - 4\cos^{4}A}}{\cos A - \sin A} $ $ = \frac{\sqrt{4\cos^{2}A(1 - \cos^{2}A)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^{2}A\sin^{2}A}}{\cos A - \sin A} $ $ = \frac{2\cos A \cdot \sin A}{\cos A - \sin A} $ $ = \frac{2\cos A \cdot \sin A}{\cos A - \sin A} $ $ = \frac{2\cos A \cdot \sin A}{\cos A - \sin A} $ $ = \frac{-2\cos A \cdot \sin A}{\cos A - \sin A} $ $ = -2 (5) $				
$= \frac{\sqrt{1 - (4\cos^4 A - 4\cos^2 A + 1)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos A - \sin A}$ $= \frac{\sqrt{4\cos^2 A (1 - \cos^2 A)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^2 A \sin^2 A}}{\cos A - \sin A}$ $= \frac{2\cos A \cdot \sin A}{\cos A \cdot - \sin A}$ $= \frac{2\cos A \cdot \sin A}{\cos A \cdot - \sin A}$ $= -2$ // identity // answer		$\frac{\sqrt{1-\cos^2 2A}}{\sqrt{1-(2\cos^2 A-1)^2}}$		
$= \frac{\sqrt{4\cos^2 A(1-\cos^2 A)}}{\cos A \sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A \sin A}$ $= \frac{2\cos A. \sin A}{\cos A \sin A}$ $= \frac{2\cos A. \sin A}{\cos A \sin A}$ $= -2$ // identity // answer		$\cos(-A)\cos(90^{\circ} + A) = \cos A - \sin A$	✓ cosA ✓ – sm	A.
$= \frac{\sqrt{4\cos^2 A(1-\cos^2 A)}}{\cos A \sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A \sin A}$ $= \frac{2\cos A. \sin A}{\cos A \sin A}$ $= \frac{2\cos A. \sin A}{\cos A \sin A}$ $= -2$ // identity // answer		√1-(4cos ⁴ A - 4cos ² A +1)		
$= \frac{\sqrt{4\cos^2 A(1-\cos^2 A)}}{\cos A \sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A \sin A}$ $= \frac{2\cos A. \sin A}{\cos A \sin A}$ $= -2$ / identity answer (5)		$= \frac{\sqrt{1 - (4005 \text{ M} - 4005 \text{ M} - 4005 \text{ M}}}{\cos \Delta - \sin \Delta} = \frac{\sqrt{4005 \text{ M} - 4005 \text{ M}}}{\cos \Delta - \sin \Delta}$		
$ \begin{array}{c} \cos A = \sin A \\ = \frac{2\cos A \cdot \sin A}{\cos A \cdot - \sin A} \\ = -2 \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A \\ \cos A = \sin A $ $ \begin{array}{c} \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A $ $ \begin{array}{c} \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A $ $ \begin{array}{c} \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A $ $ \begin{array}{c} \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A $ $ \begin{array}{c} \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A $ $ \begin{array}{c} \cos A = \sin A \end{array} $ $ \begin{array}{c} \cos A = \sin A $ $ \begin{array}{c} $				
$= \frac{\cos A \sin A}{\cos A \sin A}$ $= \frac{2\cos A. \sin A}{\cos A \sin A}$ $= -2$ $= -2$ (5)			√identity	
$= \frac{1}{\cos A \sin A}$ $= -2$ (5)				
=-2		=	_	
			✓ answer	(5)
OR/OF		=-2		(2)
OR/OF				
OR/OF				
OR/OF				
		OR/OF		

	$\frac{\sqrt{1-(1-2\sin^2 A)^2}}{\cos A\sin A}$	√1-2sin ² A √cosA √-sinA
	$= \frac{\sqrt{1 - (1 - 4\sin^2 A + 4\sin^2 A)}}{\cos A - \sin A}$	
	$= \frac{\sqrt{4\sin^2 A(1-\sin^2 A)}}{\cos A - \sin A}$	
	$= \frac{2\sin A \sqrt{\cos^2 A}}{\cos A - \sin A}$	√identity
	= -2	✓ answer (5)
5.4.1	$\cos 2B = \frac{3}{5}$	
	$2\cos^2 B - 1 = \frac{3}{5}$	✓ identity
	$\cos^2 \mathbf{B} = \frac{4}{5}$	✓ value of cos²B ✓ answer
	∴ $\cos B = \sqrt{\frac{4}{5}} \text{ or } \frac{2}{\sqrt{5}} \text{ or } \frac{2\sqrt{5}}{5}$ [0° ≤ B ≤ 90°]	(3)
	OR/OF	
	$\cos B = \frac{\sqrt{\cos 2B + 1}}{2}$	$\sqrt{\frac{1}{2}} = \frac{\sqrt{\cos 2B + 1}}{1}$
	$=\frac{\sqrt{\frac{3}{5}+1}}{2}$	2 ✓ value of cos²B
	$=\frac{2\sqrt{5}}{5}$	✓ answer
		(3)
5.4.2	$\sin^2 \mathbf{B} = 1 - \cos^2 \mathbf{B}$ $= 1 - \left(\frac{2}{\sqrt{5}}\right)^2$	
	$= \frac{1}{5} \qquad \therefore \sin B = \frac{1}{\sqrt{5}} \text{ or } \frac{\sqrt{5}}{5}$	$\checkmark \sin^2 \mathbf{B} = \frac{1}{5}$
		✓ answer (2)
	OR/OF $(2)^2 + y^2 = (\sqrt{5})^2$	
	$4 + y^2 = 5$ (2; y)	
	y=1	✓ y = 1
	$\therefore \sin B = \frac{1}{\sqrt{5}} \text{ or } \frac{\sqrt{5}}{5}$	✓ answer (2)
	-	

	OR/OF	
	$\cos 2B = \frac{3}{5}$	
	$1 - 2\sin^2 B = \frac{3}{5}$	
	$\sin^2 \mathbf{B} = \frac{1}{5}$,
	$\therefore \sin \mathbf{B} = \frac{1}{\sqrt{5}} \text{ or } \frac{\sqrt{5}}{5}$	$\checkmark \sin^2 \mathbf{B} = \frac{1}{5}$
		✓ answer (2)
5.4.3	$cos(B + 45^{\circ}) = cosB.cos45^{\circ} - sinB.sin45^{\circ}$	√ expansion
	$= \left(\frac{2}{\sqrt{5}}\right)\left(\frac{1}{\sqrt{2}}\right) - \left(\frac{1}{\sqrt{5}}\right)\left(\frac{1}{\sqrt{2}}\right)$	$\checkmark\left(\frac{1}{\sqrt{2}}\right)$
	$=\frac{2}{\sqrt{10}}-\frac{1}{\sqrt{10}}$	$\checkmark \left(\frac{2}{\sqrt{5}}\right) \& \left(\frac{1}{\sqrt{5}}\right)$
	$= \frac{1}{\sqrt{10}} \text{ or } \frac{\sqrt{10}}{10}$	√answer (4)
	OR/OF	
	$\cos(\mathbf{B} + 45^{\circ}) = \cos\mathbf{B}.\cos45^{\circ} - \sin\mathbf{B}.\sin45^{\circ}$	✓ expansion
	$= \left(\frac{2}{\sqrt{5}}\right)\left(\frac{\sqrt{2}}{2}\right) - \left(\frac{1}{\sqrt{5}}\right)\left(\frac{\sqrt{2}}{2}\right)$	$\checkmark\left(\frac{1}{\sqrt{2}}\right)$
	$= \frac{2\sqrt{2}}{2\sqrt{5}} - \frac{\sqrt{2}}{2\sqrt{5}}$	$\checkmark \left(\frac{2}{\sqrt{5}}\right) \& \left(\frac{1}{\sqrt{5}}\right)$
	$= \frac{\sqrt{2}}{2\sqrt{5}} \text{ or } \frac{\sqrt{10}}{10}$	√answer (4)
		[21]

Question 6 November 2016


63	(/-) 2 2-i-2 2	
6.2	$f(x) - 3 = 2\sin 2x - 3$	✓ ✓ answer
	∴ maximum value = 2 – 3 = –1	(2)
6.3	$2\sin 2x = -\cos 2x$	(-)
	1	
	$\tan 2x = -\frac{1}{2}$	$\sqrt{\tan 2x} = -\frac{1}{2}$
	nof / = 36 579	
	$ref \angle = 26,57^{\circ}$	$\sqrt{2}x = 153,43^{\circ}$
	$2x = 153,43^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$	or - 26,56°
	$x = 76,72^{\circ} + k.90^{\circ}; k \in Z \text{ or } x = -13.28^{\circ} + k.90^{\circ}, k \in Z$	√76,72° or
		-13,28°
		√ k.90°; k ∈ Z
	ORIGE	(4)
	OR/OF	
	$2\sin 2x = -\cos 2x$	1
	1	$\sqrt{\tan 2x} = -\frac{1}{2}$
	$\tan 2x = -\frac{1}{2}$	$\sqrt{2}x = 153.43^{\circ}$
	26.570	& 333,43°
	$ref \angle = 26,57^{\circ}$	√76,72° &
	$2x = 153,43^{\circ} + k.360^{\circ} \text{ or } 333,43^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$	166,72°
	$x = 76,72^{\circ} + k.180^{\circ}$ or $166,72^{\circ} + k.180^{\circ}$; $k \in \mathbb{Z}$	$\sqrt{k.180^\circ}; k \in \mathbb{Z}$
		(4)
6.4	$x \in (-103,28^{\circ}; -13,28^{\circ})$	✓✓ values
		√notation (2)
	OR/OF	√√ values
	-103,28° < x < -13,28°	√notation
	-103,20 - 113,20	(3)
		[12]


Question 7 November 2016

7.1	$DB^2 = 3^2 + 3^2$ [Theorem of Pyth]	✓ substitution into	•
	= 18	Pyth	
	$DB = \sqrt{18}$	✓ value of DB	
	OB = $\frac{1}{2}$ DB = $\frac{\sqrt{18}}{2}$ or $\frac{3}{\sqrt{2}}$ or $\frac{3\sqrt{2}}{2}$ or 2,12	√ answer	(2)
	OR/OF		(3)
	OP	✓ correct ratio	
	$\sin 45^\circ = \frac{OB}{3}$	✓ OB as subject	
	$OB = 3\sin 45^{\circ}$	✓ answer	
	$OB = \frac{3\sqrt{2}}{2} or \frac{3}{\sqrt{2}} or 2,12$	answer	(3)
	OF/OR		

	$\cos 45^\circ = \frac{OB}{3}$ $\frac{1}{\sqrt{2}} = \frac{OB}{3}$ $OB = \frac{3}{\sqrt{2}} \text{ or } \frac{3\sqrt{2}}{2} \text{ or } 2,12$	✓ correct ratio ✓ special angle ✓ answer (3)
	OR/OF AÔB = 90° (diagonals bisect ⊥) OB = OA AB ² = AO ² +BO ² [pyth] ∴ AB ² = 2OB ² 2OB ² = 3 ² ∴ OB = $\frac{3}{\sqrt{2}}$ or $\frac{3\sqrt{2}}{2}$ or 2,12	✓ OB = OA ✓ Pyth ✓ answer (3)
7.2	$BE^{2} = EO^{2} + OB^{2} \qquad (Pyth)$ $BE^{2} = x^{2} + \left(\frac{3}{\sqrt{2}}\right)^{2}$ $BE = \sqrt{x^{2} + \frac{9}{2}}$ $AE^{2} = AB^{2} + EB^{2} - 2AB.EB\cos\theta$ $\cos\theta = \frac{AB^{2} + EB^{2} - AE^{2}}{2AB.EB} = \frac{AB^{2}}{2AB.EB}$ $\cos\theta = \frac{AB}{2EB}$ $\cos\theta = \frac{3}{2\sqrt{x^{2} + \frac{9}{2}}}$ OR/OF	✓ substitution into Pyth ✓ length of BE ✓ correct cosine rule ✓ cos θ as subject ✓ simplification (5)

$BE^{2} = EO^{2} + OB^{2} \qquad (Pyth)$ $BE^{2} = x^{2} + \left(\frac{3}{\sqrt{2}}\right)^{2}$	✓ substitution into Pyth
BE = $\sqrt{x^2 + \frac{9}{2}}$ AE ² = AB ² + EB ² - 2AB.EBcos θ $\left(\sqrt{x^2 + \frac{9}{2}}\right)^2 = 9 + \left(\sqrt{x^2 + \frac{9}{2}}\right)^2 - 2(3)\left(\sqrt{x^2 + \frac{9}{2}}\right)\cos\theta$ $\cos\theta = \frac{9}{6\sqrt{x^2 + \frac{9}{2}}}$ $= \frac{3}{2\sqrt{x^2 + \frac{9}{2}}}$	 ✓ length of BE ✓ correct cosine rule ✓ substituting ✓ cos θ as subject

Question 8 November 2014

8.1.1	x = 96°	(∠ at centre = 2∠ at circumference/ ∠by midpt = 2∠by omtrek)	✓ S ✓ R (2)
8.1.2	$\hat{C}_2 + \hat{B}_2 = 180^\circ - 96^\circ = 84^\circ$	(sum of \angle s in \triangle J som $v\angle$ e in \triangle)	✓S
	$y = \hat{B}_2 = 42^{\circ}$	$(\angle s \text{ opp = sides}/\angle e \text{ teenoor = sye})$	√S
			(2)
8.2.1	F ₁ = 90°	(line from centre to midpt chord/ lyn vanaf midpt na midpt kd)	✓ S ✓ R (2)
8.2.2	ABC = 150°	(opposite ∠s of cyclic quad/ tos ∠e v koordevh)	✓ S ✓ R (2)
8.3.1 (a)	tangent ⊥ radius/diameter /	raaklyn ⊥ radius/middellyn	✓ R (1)
8.3.1 (b)	tangents from common pt C raaklyne v gemeensk pt OF		✓ R (1)
8.3.2	$AB^2 + BC^2 = AC^2$ $x^2 + (x + 7)^2 = 13^2$	(Theorem of/Stelling vanPythagoras)	$AB^2 + BC^2 = AC^2$
	$x^2 + x^2 + 14x + 49 = 169$		$x^2 + (x+7)^2 = 13^2$
	$2x^2 + 14x - 120 = 0$		✓ standard form
	$x^2 + 7x - 60 = 0$		
	(x-5)(x+12)=0		
	$x = 5 (x \neq -12)$		✓ answer
			(4)
			[14]

Question 9 November 2014

9.1.1	Same base (DE) and same height (between parallel lines) Dieselfde basis (DE) en dieselfde hoogte (tussen ewewydige lyne)	✓ same base/dies basis between lines/ tussen lyne (1)
9.1.2	$\frac{\frac{AD}{DB}}{\frac{1}{2}AE \times k} = \frac{\frac{1}{2}AE \times k}{\frac{1}{2}EC \times k}$ But/Maar area $\triangle DEB = \text{area } \triangle DEC$ (Same base and same height/dieselfde basis en dieselfde hoogte) $\therefore \frac{\text{area } \triangle ADE}{\text{area } \triangle DEB} = \frac{\text{area } \triangle ADE}{\text{area } \triangle DEC}$ AD AE	✓ S ✓ S ✓ S ✓ R ✓ S
	$\frac{100}{100} = \frac{100}{100}$	(5)

9.2.1	$\frac{EM}{AM} = \frac{FD}{AD}$	(Line parallel one side of Δ	✓ S ✓R
		OR prop th; EF BD) (Lyn ewewydig aan sy v △	
	$\frac{EM}{AM} = \frac{3}{7}$	OF eweredigst; EF BD)	✓ answer/antw
			(3)
9.2.2		iags of parm bisect/hoekl parm halv)	✓ S ✓ R
	$\frac{\text{CM}}{\text{ME}} = \frac{\text{AM}}{\text{ME}} = \frac{7}{3}$	(from 9.2.1/vanaf 9.2.1)	✓ answer/antw (3)
9.2.3	$h \text{ of } \Delta FDC = h \text{ of } \Delta BDC$	(AD BC)	✓ AD BC
	$\frac{\text{area } \Delta FDC}{\text{area } \Delta BDC} = \frac{\frac{1}{2}FD.h}{\frac{1}{2}BC.h}$ $= \frac{FD}{AD}$ $= \frac{3}{7}$	(opp sides of parm =) (tos sye v parm =)	✓ subst into area form/ subst in opp formule ✓ S ✓ answer/antw (4)
	OR/OF		
	$\frac{\text{area } \Delta FDC}{\text{area } \Delta ADC} = \frac{FD}{AD} = \frac{3}{7}$	(same heights) (dieselfde hoogtes)	✓ S ✓ R
		OC (diags of parm bisect area) (hoekl v parm halv opp)	✓S
	$\frac{\text{area } \Delta FDC}{\text{area } \Delta BDC} = \frac{3}{7}$		✓ answer/antw (4) [16]

Question 10 November 2014

10.1.1	Tangent chord theorem/Raaklyn-koordstelling	✓ R
		(1)
10.1.2	Tangent chord theorem/Raaklyn-koordstelling	✓ R
		(1)
10.1.3	Corresponding angles equal/Ooreenkomstige ∠e gelyk	✓ R
		(1)
10.1.4	∠s subtended by chord PQ OR ∠s in same segment	✓ R
	∠e onderspan deur dieselfde koord OF ∠e in dieselfde segment	(1)
10.1.5	alternate ∠s/verwisselende ∠e ; WT SP	✓ R
		(1)

10.2	$\frac{RW}{RS} = \frac{RT}{RP}$	(Line parallel one side of Δ OR prop th; WT SP)	✓ S ✓ R
	$\therefore RT = \frac{WR.RP}{RS}$	(Lyn ewewydig aan sy v Δ OF eweredighst: WT SP)	(2)
	OR/OF		
	ΔRTW ΔRPS	(∠; ∠; ∠)	√S
	$\therefore \frac{RW}{RS} = \frac{RT}{RP}$	(ΔRTW ΔRPS)	√ S
	$\therefore RT = \frac{RW.RP}{RS}$		(2)
10.3	$y = \hat{T}_2 = \hat{R}_3$	(tan chord theorem/Rkl-koordst)	✓ S ✓ R
	$y = \hat{\mathbf{R}}_3 = \hat{\mathbf{Q}}_1$	(∠s in same segment/∠e in dieselfde segment)	✓ S ✓ R (4)

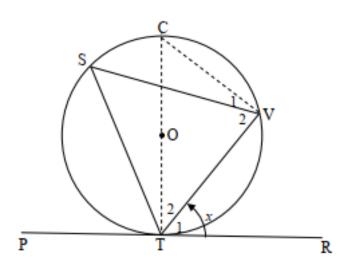
10.4	$\hat{Q}_3 = P\hat{S}R$	(ext ∠ of cyc quad/buite∠v kdvh)	√S √R	
	$P\ddot{S}R = \hat{W}_2$ $\therefore \hat{Q}_3 = \hat{W}_3$	(corresp∠s/ooreenk ∠e ; WT SP)	√S	(3)
	OR/OF			`
	$\hat{Q}_2 = x$	(∠s in same segment/∠e in dies segment)	✓ R	
	$\hat{Q}_3 = 180^{\circ} - (x + y)$	(∠s on straight line/∠e op reguitlyn)	√ S	
		$(\angle s \text{ of } \Delta WRT/\angle e \ v \ \Delta WRT)$	√S	(3)
	$\therefore \hat{Q}_3 = \hat{W}_2$			(-)
10.5	In $\triangle RTS$ and $\triangle RQP$:			
	$\hat{\mathbf{R}}_3 = \hat{\mathbf{R}}_2 = y$	(proven above/hierbo bewys)	√S	
	$\hat{S}_2 = \hat{P}_2$	(∠s in same segment/∠e in dies segment)	✓ S/R	
	$R\hat{T}S = R\hat{Q}P$	$(3^{rd} \text{ angle of } \Delta)$	✓ S OR/OF	
	∴∆RTS ∆RQP	(Z; Z; Z)	(Z; Z; Z)	
				(3)

10.6	$\frac{RT}{RQ} = \frac{RS}{RP}$	(ΔRTS ΔRQP)	√ S
	$\frac{RS}{RP} \times \frac{RS}{RP} = \frac{RT}{RQ} \times \frac{RS}{RP}$		✓ × RS on both sides
	$\left(\frac{RS}{RP}\right)^2 = \left(\frac{RT}{RP}\right)\left(\frac{RS}{RQ}\right)$		12 100
	$= \left(\frac{RW}{RS}\right) \left(\frac{RS}{RQ}\right)$	(proven in 10.2/bewys in 10.2)	$\checkmark \left(\frac{RT}{RP}\right)\left(\frac{RS}{RQ}\right)$ (3)
	$= \frac{RW}{RQ}$ OR/OF		
	$\frac{RT}{RQ} = \frac{RS}{RP}$	(ARTS ARQP)	√S
	But $RT = \frac{WR.RP}{RS}$ RT WR.RP RS	(proven in 10.2/bewys in 10.2)	$\sqrt{RT} = \frac{WR.RP}{RS}$
	$\therefore \frac{RQ}{RQ} = \frac{RQ.RS}{RQ.RS} = \frac{RP}{RP}$ $WR.RP^2 = RQ.RS^2$		✓multiplication/
	$\therefore \frac{WR}{RQ} = \frac{RS^2}{RP^2}$		vermenigvuldig (3)
	OR/OF		
	$\frac{RT}{RS} = \frac{RQ}{RP}$ $RC = RT.RP$	(ARTS ARQP)	√S
	$RQ = \frac{RT \cdot RS}{RS}$ and WR = $\frac{RT \cdot RS}{RP}$	(proven in 10.2/bewys in 10.2)	$\sqrt{WR} = \frac{RT.RS}{RP}$
	$\frac{WR}{RQ} = \frac{RT.RS}{\frac{RP}{RT.RP}}$		
	$= \frac{RS}{RP} \times \frac{RS}{RT.RP}$ RS^{2}		✓ simplification/ vereenvoudiging
3	$=\frac{RS}{RP^2}$		(3) [20]

Question 7 Feb March 2015

7.1	MB = 10 cm	✓ answer/antw
		(1)
7.2	line from centre to midpoint of chord is perpendicular to chord/lyn	✓ answer/antw
	vanaf midpt na midpt van koord is loodreg op koord	(1)
	OR/OF	
	line from centre bisects chord/lyn vanaf midpt halveer koord	✓ answer/antw
7.3	MD 5	(1)
1.3	$\frac{MP}{OM} = \frac{5}{2}$	$\checkmark \frac{x + OP}{x} = \frac{5}{2}$
	x + OP 5	
	$\frac{x + OP}{x} = \frac{5}{2}$	$\checkmark OP = \frac{3x}{2}$
	2x + 2OP = 5x	2 (2)
	$OP = \frac{3x}{2}$	(2)
	$\frac{31-\frac{1}{2}}{2}$	
	OR/OF	$\sqrt{\frac{OP}{OM}} = \frac{3}{2}$ $\sqrt{OP} = \frac{3x}{2}$
	ORO!	OM 2
	$\frac{OP}{OM} = \frac{3}{2}$	$\sqrt{OP} = \frac{3x}{2}$
		(2)
	$OP = \frac{3x}{2}$	
	2	
7.4	$OM^2 + MB^2 = OB^2$	
	$(3x)^2$	✓ subst into/subst
	$x^2 + 10^2 = \left(\frac{3x}{2}\right)^2$	Pythagoras
	$4x^2 + 400 = 9x^2$	$\sqrt{4x^2 + 400} = 9x^2$
	$5x^2 = 400$	
	$x^2 = 80$	
	$x = 8.94$ or $4\sqrt{5}$ or $\sqrt{80}$	✓ answer/antw
	X = 0,74 OI 477 OI 700	(3)
		[7]

Question 8 Feb March 2015


8.1.1	$\hat{D} = \frac{1}{2} \hat{O}_1 = 55^{\circ} \ (\angle \text{ at centre} = 2 \times \angle \text{at circ} / \angle \text{ by midpt} = 2 \times \angle \text{by omt})$	√S √R (2)
8.1.2	$\hat{A} = \frac{1}{2}\hat{O}_1 = 55^{\circ} \ (\angle \text{ at centre}=2 \times \angle \text{at circ}/\angle \text{ by midpt}=2 \times \angle \text{by omt})$	√S √R (2)
	OR/OF	
	$\hat{A} = \hat{D} = 55^{\circ}$ (\angle s in same segment/ \angle e in dieselfde segment)	√S √R (2)

8.1.3	$\hat{B}_1 = \hat{D} = 55^{\circ}$ (alternate $\angle s/verwiss \angle e$; AB DC) $\hat{E}_2 = \hat{B}_1 + \hat{A}$ (ext \angle of Δ = sum of opp \angle */buite $\angle v\Delta$ =som v tos $\angle e$) = 55° + 55°	√S √R √R
	$\hat{\mathbf{E}}_2 = 110^{\circ}$	✓ answer/antw (4)
8.2	$\hat{E}_2 = \hat{O}_1 = 110^\circ$ (proven in/bewys in 8.1.3)	√S
	BEOC is a cyclic quadrilateral (equal ∠s subtended by line/	√R
	gelyke ∠e onderspan deur lyn)	(2)
1		[10]

Question 9 Feb March 2015

9.1	the interior opposite angle/die teenoorstaande binnehoek.	✓ answer/antw
		(1)

9.2

Construction: Draw diameter CT and join CV. Konstruksie: Trek middellyn CT en verbind CV.

$\hat{\mathbf{V}}_{_{1}}+\hat{\mathbf{V}}_{_{2}}=90^{\circ}$	∠in semi-circle/∠in halfsirkel	✓S ✓ R
$\hat{T}_2 = 90^{\circ} - x$	Tangent ⊥ diameter/radius/raaklyn ⊥ middellyn/radius	✓ R
$\therefore \hat{\mathbf{C}} = \mathbf{x}$	Sum of the angles of triangle/Som van die hoeke van 'n driehoek	✓S
$\therefore \hat{S} = x$	∠'s same segment/∠e in dieselfde segment	✓ R
$\therefore \hat{VTR} = \hat{S}$		(5)

Euclidean Geometry Memo

9.3.1	Equal chords subtend equal ∠s/Gelyke koorde onderspan gelyke ∠e	✓ R (1)
9.3.2	$\hat{W}_4 = 30^{\circ}$ (tan chord theorem/rkl-koordst) $\hat{W}_1 = 30^{\circ}$	✓ answer/antw ✓ reason/rede ✓ answer/antw (3)
9.3.3(a)	$\hat{R}_4 = \hat{W}_2 = 50^\circ$ (tan chord theorem/rkl-koordst)	√ S √R
	$\hat{S}_2 = \hat{R}_3 + \hat{W}_2$ (ext \angle of \triangle /buite $\angle v \triangle$)	
	$\therefore \hat{S}_2 = 80^{\circ}$	✓S
		(3)
	OR/OF	
	$\hat{R}_2 = \hat{R}_3 = 30^\circ$ (= chords subtend = \angle s /= kde onderspan = \angle e) $\hat{R}_4 = \hat{W}_2 = 50^\circ$ (tan chord theorem/rkl-koordst)	✓ S ✓R
	$\therefore \hat{S}_2 = 80^{\circ}$	√ S (3)

9.3.3(b)		(ext∠of cyclic quad/buite∠van koordevh)	✓ S ✓ R
	$V + \hat{W}_4 = \hat{T}_2$	(ext∠ of Δ/buite∠van Δ)	✓ S
	∴ Û = 50°		✓ S
			(4)
9.3.4	In ΔRVW and/en ΔR	WS:	√ using the correct Δs/ gebruik korrekte Δe
	$\hat{R}_2 = \hat{R}_3 = 30^{\circ}$	(proven/bewys in 9.3.1)	√ S
	$\hat{\mathbf{V}} = \hat{\mathbf{W}}_2 = 50^{\circ}$	(proven/bewys in 9.3.3)	√ S
	$V\hat{W}R = \hat{S}_1$	$(3rd \angle in \Delta)$	✓ R
	∴∆RVW ∆RWS	(∠∠∠)	(3rd ∠ in Δ) or (∠∠∠)
	$\therefore \frac{WR}{RV} = \frac{RS}{WR}$	$(\Delta RVW \Delta RWS)$	√ S
	∴ WR ² = RV.RS		(5) [22]

Question 10 Feb March 2015

10.1.1	corresponding ∠s/ooreenkomstige∠e; PN RT	√ answerlantw	
		((1)
10.1.2	∠; ∠; ∠ OR/0F ∠; ∠	✓ answer/antw	
		((1)

		
10.2	$\frac{PM}{RM} = \frac{PN}{RT} \qquad (\Delta PNM \Delta RTM)$	✓ S
	$=\frac{PN}{3PN}$	✓ S
	$=\frac{1}{3}$	(2)
10.3	$\frac{PM}{RM} = \frac{1}{3} \qquad \therefore \frac{RP}{RM} = \frac{2}{3}$	✓ Use of Pyth. for RN² and PN²
	$RN^2 - PN^2 = (RM^2 + NM^2) - (PM^2 + NM^2)$ (Pyth) = $RM^2 - PM^2$	\checkmark RM = $\frac{3}{2}$ RP
	$= \left(\frac{3}{2}RP\right)^2 - \left(\frac{1}{2}RP\right)^2$	$\checkmark PM = \frac{1}{2}RP$
	$= \frac{9}{4}RP^2 - \frac{1}{4}RP^2$	$\sqrt{\frac{9}{4}}$ RP ² & $\frac{1}{4}$ RP ²
	$= 2RP^{2}$	(4)
	OR/OF	
	$RN^{2} - PN^{2} = (RM^{2} + NM^{2}) - (PM^{2} + NM^{2})$ (Pyth) $= RM^{2} - PM^{2}$ $= (3PM)^{2} - PM^{2}$ $= 8PM^{2}$ $= 2(2PM)^{2}$ $= 2RP^{2}$	✓ Use of Pyth. for RN² and PN² ✓ RM = RP + PM ✓ (3PM)² – PM² ✓ RP = 2PM (4)
	OR/OF	
	$RN^{2} - PN^{2} = (RM^{2} + NM^{2}) - (PM^{2} + NM^{2})$ (Pyth) $= RM^{2} - PM^{2}$ $= (RP + PM)^{2} - PM^{2}$ $= RP^{2} + 2RP.PM + PM^{2} - PM^{2}$ $= RP^{2} + 2RP. \frac{1}{2}RP$ $= 2RP^{2}$	✓ Use of Pyth. for RN² and PN² ✓ RM = RP + PM ✓ expansion/ uitbreiding ✓ PM = 1/2 RP
		(4) [8]

Question 8 November 2015

8.1.1	twice or double /twee keer of dubbel	√ R
		(1)

8.1.1	twice or double /twee ke	eer of dubbel	✓ R	
				(1)
8.1.2		$itre = 2 \times \angle \text{ at circ/} midpts \angle = 2 \times omtreks \angle]$	√S	
	_	$itre = 2 \times \angle \text{ at circ/} midpts \angle = 2 \times omtreks \angle]$		
	$\hat{O}_1 + \hat{O}_2 = 360^\circ$	[∠s in a rev/∠e in omw of om 'n pt]	✓ S ✓ S	
	$2\hat{A} + 2\hat{C} = 360^{\circ}$		✓ S	
	∴ Â + Ĉ = 180°			(3)
	OR/OF			
	Let/Gestel $\hat{O}_1 = 2x$			
	$\hat{A} = x$ [\angle at centre	$e = 2 \times \angle$ at circ/midpts $\angle = 2 \times omtreks \angle$	√S	
	$\hat{O}_2 = 360^{\circ} - 2x$	[∠s in a rev/∠e in omw of om 'n pt]	✓ S ✓ S	
	$\hat{C} = 180^{\circ} - x$ [\angle at cent	$tre = 2 \times \angle$ at $circ/midpts \angle = 2 \times omtreks \angle$	¥ 5	
	$\therefore \hat{A} + \hat{C} = 180^{\circ}$			(3)
8.2	$\hat{A} = \hat{C}_2$	[ext∠of cyclic quad/buite∠v kdvh]	✓S✓R	
	$\hat{E} = 180^{\circ} - \hat{C}_{2}$	[opp ∠s of cyclic quad/tos∠e v kdvh]	✓S✓R	
	∴ Ê = 180° – Â			
	∴ EF AB	[co-interior ∠s 180°/ko-binne∠e 180°]	✓ R	
	OR/OF			(5)
	$\hat{\mathbf{B}} = \hat{\mathbf{D}}_{i}$	[ext \angle of cyclic quad/buite \angle v kdvh]	✓S✓R	
	$\hat{F} = 180^{\circ} - \hat{D}_{1}$	[opp ∠s of cyclic quad/tos∠e v kdvh]		
	$\hat{F} = 180^{\circ} - \hat{B}$		✓S✓R	
	∴ EF AB	[co-interior ∠s 180°/ko-binne∠e 180°]	✓ R	
				(5) [9]

Question 9 November 2015

9.1	$\hat{K}_3 = \hat{C}$	[corresp ∠s/ooreenk ∠e; CA KT]	✓S✓R	
	= Â ₃	[tan-chord th/raakl-koordst]	✓ S ✓ R	
	= x			(4)
9.2	$\hat{\mathbf{K}}_3 = x = \hat{\mathbf{A}}_3$	[proved/bewys in 9.1]	✓S	
	∴ AKBT is eye quad	[line (BT) subtends equal ∠s/ lyn (BT) onderspan gelyke ∠e] OR/OF	√ R	(2)
		[converse ∠s in same segment/ omgek ∠e in dies segment]		

9.3	$\hat{K}_3 = \hat{C}$	[proven in 9.1]		
	$= \hat{B}_2$	[tan-chord th/raakl-koordst]	√S √R	
	$=\hat{K}_2$	[∠s in the same segm/∠e in dies segm]	√S√R	
	∴ TK bisects.	lhalveer AĤB		
	OR/OF			(4)
	$\hat{K}_2 = \hat{B}_2$	[∠s in the same seg/∠e in dies segm]	√S √R	
	$=\hat{A}_3$	[tans from same pt; ∠s opp equal sides/	√S√R	
		rkle v dies pt; ∠e to gelyke sye]		

Question 10 November 2015

10.1		[∠ in semi circle/∠ in halfsirkel] [Th of/stelling v Pythagoras]	✓ S ✓ using/gebruik Pyth korrek/ correctly ✓ answ/antw (3)
10.2.1	$\frac{\text{CF}}{\text{CD}} = \frac{\text{CE}}{\text{CB}}$	[line one side of Δ /lyn een sy van Δ]	✓ S/R
		OR/OF ΔCEF ΔCBD	
	$\therefore \frac{CF}{15} = \frac{1}{4}$	OR OF ACE! ACED	✓ subst correctly/
	$\therefore CF = 3.75$		korrek
			✓ answ/antw
10.2.2	PÂG 000	F. C. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	(3)
10.2.2	BDC = 90°	[∠ in semi circle/∠ in halfsirkel]	(~ 7
	$\hat{EFC} = \hat{BDC}$	[corresp \angle s/ooreenk \angle e; EF BD]	✓ S/R
	$ABC = 90^{\circ}$	$[\tan \perp \operatorname{diameter}/raakl \perp middellyn]$	✓ S ✓ R
	In $\triangle BAC$ and $\triangle AC$		
		[proven/bewys]	
	$\hat{\mathbf{C}} = \hat{\mathbf{C}}$	[common/gemeen]	✓ S
	$\therefore \Delta BAC \Delta FEC$	[∠∠∠]	✓ R
			(5)
	OR/OF		
	$\hat{BDC} = 90^{\circ}$	[∠ in semi circle/∠ in halfsirkel]	
	EFC = BDC	[corresp ∠s/ooreenk ∠e; EF BD]	✓ S/R
	$\hat{ABC} = 90^{\circ}$	$[\tan \perp \operatorname{diameter}/raakl \perp middellyn]$	✓ S ✓ R
	In $\triangle BAC$ and/en $\triangle F$	EC:	
	$\hat{ABC} = \hat{EFC}$	[proven/bewys]	
	$\hat{\mathbf{C}} = \hat{\mathbf{C}}$	[common/gemeen]	✓ S
	BÂC = FÊC	$[\angle \text{ sum in } \Delta \angle \text{ som van } \Delta]$	√S

10.2.3	$EC = \frac{1}{4} \times 17 = 4,25$	✓ length of/lengte v EC
	$\frac{AC}{EC} = \frac{BC}{FC}$ $AC $	√S
	4,25 = 3,75	✓ subst correctly/ korrek
	:. AC = 19,27 or/of $19\frac{4}{15}$	✓ answ/antw (4)
	OR/OF	
	$\cos \hat{C} = \frac{CF}{CE} = \frac{BC}{AC}$ 3,75 17	✓✓ correct ratios/ korrekte verh's
	$\therefore \frac{3,75}{4,25} = \frac{17}{AC}$	✓ subst correctly/ korrek
	:. AC = 19,27 or/of 19 $\frac{4}{15}$	✓ answ/antw (4)
	OR/OF	/ S OP Bat 4
	$\Delta BCA \parallel \parallel \Delta DBC$ $CB^2 = CD \cdot AC$	✓ S OR Pyth th ✓ correct ratio
	$AC = \frac{BC^2}{DC}$	
	$=\frac{17^2}{15}$	✓ subst
	$= 19,27 \text{ or/of } 19\frac{4}{15}$	✓ answ/antw (4)
	OR/OF	
	$\hat{C} = A\hat{B}D$ [tan-chord theorem/rkl-kdstelling] $\frac{AD}{Q} = tanA\hat{B}D$	√S
	$= \tan \hat{C}$ $= \tan \hat{C}$	✓ correct ratio
	$=\frac{8}{15}$	✓ subst
	$\therefore AD = \frac{64}{15}$	
	:. AC = 19,27 or/of 19 $\frac{4}{15}$	✓ answlantw (4)
10.2.4	AC is diameter of the circle passing through A, B and C	✓ S/R
	[chord subtends 90° OR converse ∠ in semi circle] AC is middellyn van die sirkel wat deur die punte A, B en C gaan [koord onderspan 90° OF omgek ∠ in halfsirkel]	✓ answ/antw
	:.radius = $\frac{1}{2} \times 19,27 = 9,63 \text{ or/of } 9\frac{19}{30} \text{ or/of } \frac{1}{2} \text{AC}$	(2) [17]

Question 11 November 2015

_						
11.1	equiangular or similar/gelykhoekig of gelykv	ormig	√	answ/ar	ntw	
						(1)
11.2.1	$\frac{1}{1} = \frac{1}{1} = \frac{1}$				tements/ 3 bewerings (3)	
	$\therefore \Delta \text{KPM} \mid \mid \mid \Delta \text{RNM}$ [Sides of Δ in prop	lsye v ∆ e	weredig]			
	OR/OF					
	$\frac{RN}{KP} = \frac{0.75}{1.5} = \frac{1}{2} ; \frac{NM}{PM} = \frac{1}{2} ; \frac{RM}{KM} = \frac{1.25}{2.5} = \frac{1}{2} ; \frac{RN}{KP} = \frac{NM}{PM} = \frac{RM}{KM}$ $\therefore \Delta \frac{RN}{KP} = \frac{NM}{PM} = \frac{RM}{KM}$ $\therefore \Delta \frac{RN}{KP} = \frac{NM}{PM} = \frac{RM}{KM}$ (Sides of Δ in prop		weredig]		tements/ 3 bewerings (3)	
	OR/OF					
	In \triangle MNR: $1,25^2 = 1^2 + 0,75^2 = 1,5625$ \therefore MNR = 90° [converse Pyth theorem] In \triangle PKM: $2,5^2 = 1,5^2 + 2^2 = 6,25$			$\checkmark \hat{P} = M\hat{N}R$		
	$\therefore \hat{P} = 90^{\circ}$ [converse Pyth theorem of PKM = $\frac{1.5}{2.5} = \frac{3}{5}$ and $\cos \hat{R} = \frac{0.75}{1.25} = \frac{3}{5}$	m]				
	∴ PŘM = Ř In ΔKPM and ΔRNM PŘM = Ř [proved]			√ PŔM	= Ř	
	$\hat{P} = M\hat{N}R$ [proved] $\therefore \Delta KPM \Delta RNM [\angle; \angle; \angle OR 3^{rd} \angle]$			√ [∠;∠;	∠ OR 3 rd ∠] (3)	
11.2.2	$P\hat{K}M = \hat{R}$ $[\Delta KPM \Delta R]$	NM] ✓	S		(3)	_
	∴ \hat{P} is common/gemeen ∴ $\Delta RPQ \mid \mid \mid \Delta KPM$ [$\angle \angle \angle$] $\frac{RP}{KP} = \frac{RQ}{KM}$ [$\Delta RPQ \mid \mid \mid \Delta K$	PM]	∆RPQ ∆I S subst con			
	$\therefore \frac{3,25}{1,5} = \frac{RQ}{2,5}$ $\therefore RQ = \frac{2,5 \times 3,25}{1,5} = 5,42 \text{ or } 5\frac{5}{12}$		$korrek$ $RQ = 5\frac{5}{12}$	-		
	\therefore NQ = 5,42 - 0,75 = 4,67 or $4\frac{2}{3}$	✓	NQ = ansi	vlantw		

$\hat{RNM} = \hat{P}$	$[\Delta \text{KPM} \Delta \text{RNM}]$	√S
∴ R is common/gemeen		
∴ ΔRNM ΔRPQ	[ZZZ]	✓ ARNM ARPQ
	CARNELLI ARROL	
$\frac{RP}{RN} = \frac{RQ}{RM}$	[\Delta RNM \Delta RPQ]	✓S
$\therefore \frac{3,25}{0,75} = \frac{RQ}{1,25}$		✓ subst correctly/ korrek
:. RQ = 5,42 or $5\frac{5}{12}$		$\checkmark RQ = 5\frac{5}{12}$
\therefore NQ = 5,42 - 0,75 = 4,67 o	or $4\frac{2}{3}$	✓ NQ = answ/antw
OR/OF		(6)
In \triangle MNR: 1,25 ² = 1 ² + 0,75 ² = 1,5625		✓S
∴ MNR = 90° [conve	erse Pyth theorem]	
In $\triangle PKM$: 2,5 ² = 1,5 ² + 2 ² = 6,25	erse r yar areoremj	
	erse Pyth theorem]	
In ΔMNR and ΔQPR	erse r yur meoremj	
∠R is common		
$M\hat{N}R = \hat{P} = 90^{\circ}$		
∴ ΔMNR ΔQPR [∠∠∠]		✓ ∆MNR ∆QPR
RP RQ	[\(\Delta RNM \) \ \(\Delta RPQ \) \	√ S
$\overline{RN} = \overline{RM}$	[Mann []] Mad Q]	* 5
3,25 RQ		✓ subst correctly/
$\therefore \frac{3,25}{0,75} = \frac{RQ}{1,25}$		korrek
:. RQ = 5,42 or $5\frac{5}{12}$		$\sqrt{RQ} = 5\frac{5}{12}$
	. 2	✓ NQ = answ/antw
\therefore NQ = 5,42 - 0,75 = 4,67 o	or 4 = 2	(6)
	3	1101
<u> </u>		[20]

Question 8 Feb March 2016

8.1.1	$\hat{K}_2 = \hat{M}_2 = 40^{\circ}$	[tan chord theorem/raakl-kdst]	√s √R	
			(2	2)
8.1.2	$\hat{N}_i = \hat{K}_i$	$[\angle s \text{ in the same seg}/\angle e \text{ in dies segm}]$	√S √ R	
	$\hat{K}_1 = 84^\circ - 40^\circ = 44^\circ$			
	$\hat{K}_1 = 84^{\circ} - 40^{\circ} = 44^{\circ}$ $\therefore \hat{N}_1 = 44^{\circ}$		√s	
			(3	3)
8.1.3	$\hat{T} = \hat{N}_1 = 44^{\circ}$	[alt/verw ∠s/e; KT NM]	√S √R	
			(2	2)
8.1.4	$\hat{L}_2 = \hat{K}_2 + \hat{T}$ = 40° + 44°	[ext \angle of \triangle /buite $\angle v \triangle$]	√R	
	= 40° + 44° = 84°		√s	
			(2	2)

8.1.5	In Δ KLM: $44^{\circ} + 84^{\circ} + 40^{\circ} + \hat{L}_{1} = 1$ $\therefore \hat{L}_{1} = 12^{\circ}$	180° [∠s sum in Δ/∠e som in Δ]	√s	
	L ₁ = 12		3	(1)
8.2	$\hat{C} = 108^{\circ}$ $2x + 40^{\circ} + 108^{\circ} = 180^{\circ}$ $2x = 32^{\circ}$	[opp∠s of m/tos ∠e v m] [opp∠s of cyc quad/tos∠e v kdvh]	√S √R √S √R	
	x = 16°	OR/OF	√answ/antw	(5)
	$\hat{C} = 180^{\circ} - (2x + 40^{\circ})$ $180^{\circ} - (2x + 40^{\circ}) = 108^{\circ}$ $2x = 32^{\circ}$	[opp∠s of cyc quad/tos∠e v kdvh] [opp∠s of m/tos ∠e v m]	✓S ✓R ✓S ✓R	
	x = 16°		√answ/antw	(5) [15]

Question 9 Feb March 2016

9.1	ABCD is a m	[diags of quad bisect each other/ hoekl v vh halveer mekaar]	✓ R	(1)
9.2	$\frac{ED}{DB} = \frac{FE}{AF}$	[Prop Th/Eweredigh st, DF BA]	√s √ R	
	$\frac{ED}{DB} = \frac{GE}{CG}$	[Prop Th/Eweredigh st; DG BC]	√S √ R	(4)
9.3	$\frac{FE}{AF} = \frac{GE}{CG}$	[proved/bewys]	√s	
	∴AC FG	[line divides two sides of Δ in prop/	✓S ✓R	
	Ĉ, = Ê,	lyn verdeel 2 sye van ∆ eweredig] [alt/verw ∠s/e; AC FG]	√S	
	$\hat{A}_1 = \hat{C}_2$	[alt/verw ∠s/e; AB CD]	✓S	(5)
	$\therefore \hat{\mathbf{A}}_1 = \hat{\mathbf{F}}_2$			\-/
9.4	$\hat{A}_1 = \hat{A}_2$	[diags of rhombus/hoekl v ruit]	√s	
	$\hat{A}_2 = \hat{F}_2$	$[\hat{\mathbf{A}}_1 = \hat{\mathbf{F}}_2]$	√ S	
	∴ ACGF = cyc q	uad/ <i>kdvh</i> [∠s in the same seg =/	√R	
		∠e in dies segm =]		(3)
		OR/OF		
	$\hat{C}_2 = \hat{A}_2$ $\hat{A}_2 = \hat{G}_2$	[∠s opp equal sides of rhombus/ ∠e to gelyke sye v ruit]	√s	
		[alt/verw-∠s/e; AC FG]	√S	
	∴ Ĉ, =Ĝ, · ACGE is a cuc	quad/kdvh [∠s in the same seg =/		
	Acor is a cyc	\(\alpha\)	√R	
		_		(3)
				[13]

Question 10 Feb March 2016

10.1.1	In $\triangle ADE$ and/en $\triangle PQR$: AD = PQ $\hat{A} = \hat{P}$ AE = PR $\triangle ADE = \triangle PQR$	[construction/konstr] [given/gegee] [construction/konstr] [S∠S]	✓all/al 3 S's/e ✓reason/rede	(2)
10.1.2	$\hat{ADE} = \hat{Q}$ But $\hat{B} = \hat{Q}$	$[\Delta s = :. corres/ooreenk \angle s/e =]$	√ ADE = Q	
	. ~.	[given/gegee]		
	∴ ADE = B ∴ DE BC	[coπes/ooreenk ∠s/e =]	✓ ADE = B ✓ reason/rede	(3)
10.1.3	AB = AC	[Prop Th/Favoradish et DE [] BC]	√S/R	
	AD AE	[Prop Th/Eweredigh st; DE BC]		
	But/ $Maar$ AD = PQ and/ e	m AE = PR [construction/konstr]	√S	
	AB _ AC			
	∴ PQ = PR			(2)

10.2.1	line from centre to midpt o	of chord/lyn van midpt na midpt van	√answ/antw (1)
10.2.2	OP VS [In ΔROP and/en ΔRVS:	Midpt Theorem/Midpt-stelling]	√S √ R
	$\hat{R} = \hat{R}$	[common/gemeen]	√S
	$\hat{O}_2 = \hat{V}$	[corresplooreenk ∠sle; OP VS]	√S & ∠;∠;∠
	∴∆ROP ∆RVS [[∠,∠,∠]	OR/OF 3 angles/hoeke
			(4)
		OR/OF	
	In ΔROP and/en ΔRVS:		
	$\hat{P}_2 = V\hat{S}R$ [correspondence]	nding ∠s/ ooreenkomstige ∠'e]	/C / D
	$\hat{R} = \hat{R}$ [c	ommon/gemeen]	√S √ R √S
	∴ΔROP ΔRVS [∠	∠ , ∠ , ∠]	√S & ∠;∠;∠
			OR/OF
			3 angles/hoeke
			(4)

10.2.3	In ΔRVS and/en ΔRST: VŜR = SÎR = 90° R̂ is common/gemeen	[∠ in semi-circle/∠ in halfsirkel]	√S √ R √S & ∠;∠;∠
	$\hat{V} = T\hat{S}R$ $\therefore \Delta RVS \Delta RST$	[∠,∠,∠]	OR/OF 3 angles/hoeke (3)

10.2.4	In \triangle RTS and/en \triangle STV: $R\hat{T}S = V\hat{T}S = 90^{\circ}$ $\hat{R} = 90^{\circ} - T\hat{S}R$	[∠s on straight line/∠e op rt lyn]	✓ARTS & ASTV ✓S ✓S
	= $T\hat{S}V$ $T\hat{S}R = \hat{V}$ $\triangle ARTS \triangle STV$ $\therefore \frac{RT}{ST} = \frac{TS}{VT}$ $\therefore ST^2 = VT.TR$	[∠,∠,∠]	✓S (with justification/met motivering) ✓ARTS △STV ✓ratio/verh
			(6)

Question 8 May June 2016

	<u> </u>		
8.1.1	$\bar{P} = 32^{\circ}$ [opp \angle s of cyclic quad/teenoorst \angle e v koordevh]	✓ S ✓ R	(2)
8.1.2	$\hat{O}_1 = 2(32^\circ) = 64^\circ \ [\angle \text{centre} = 2 \angle \text{at circum/midpts} \angle = 2 \text{ omtreks} \angle]$	√S√	
			(2)
	OR/OF		(2)
	reflex $\hat{O} = 296^{\circ}$ [\angle centre = 2 \angle at circum/midpts \angle = 2 omtreks \angle]	✓Sa	nd R
	$\hat{O}_1 = 64^\circ$ [\angle s around a point/ $\angle e$ om 'n punt]	√S	(2)
8.1.3	$OMS = 180^{\circ} - (32^{\circ} + 18^{\circ} + 43^{\circ}) [sum \angle s \Delta / som \angle e \Delta]$	√S	(2)
	= 87°	√S	450
8.1.4	$\hat{R}_3 = T\hat{M}P$ [ext \angle cyclic quad/buite \angle koordevh]	√ R	(2)
0.1.4	R ₃ = TMP [ext ∠ cyclic quad/buite ∠ koordevh] = 87°+18°-6°	- 10	
	=99•	√S	
		v 5	(2)
8.2.1	COTTES ∠Slooreenk ∠e; AB DC		✓ R
			(1)
8.2.2	$\hat{E}_2 = x$ [tan - chord theorem/raakl - koordst]		√S √R
	$\hat{B}_2 = x$ [$\angle s \text{ opp} = \text{sides}/\angle e \text{ teenoor} = sye$] Any 3 $\angle s$ correct		√S√R
	$\hat{E}_3 = x$ [alt \angle s/verwiss \angle e; AB DC]		
	$D\hat{A}B = x \text{ [opp } \angle s \parallel^m \text{/teenoor } \angle e \parallel^m \mathbf{OR}/\mathbf{OF} \text{ alternate/verwiss } \angle s/e; BC \parallel AD]$		
8.2.3	$\hat{D} = 180^{\circ} - x$ [co - int \angle s suppl/ko - binne \angle e suppl; AD BC]		(6) ✓S ✓ R
	∴ $\hat{B}_2 + \hat{D} = 180^{\circ}$		
	∴ ABED a cyc quad/kdvh [converse opp ∠s of cyclic quad/		
	omgek teenoorst∠e koordevh]		✓ R
	07/07		(3)
	OR/OF	A Di	
	$D\hat{A}B = x$ [opp $\angle s$ /teenoor $\angle e \mid \mid^m$] OR/OF [alt $\angle s$ /verwiss $\angle e$; $BC \mid \mid x$	ADJ	√S √ R
	$\hat{E}_3 = D\hat{A}B = x$		(D
	∴ ABED a cyc quad/kdvh [converse ext ∠ of cyc quad/omgek buite∠v koor	devhj	(3)
	nsored by Anglo American Platinum 82 Compile	d by XL E	[18]
Spor	nsored by Anglo American Platinum 82 Compile	u by AL E	_uucalion

Question 9 May June 2016

9.1	in the alternate segment/in die(teen)oorstaande segment ✓		✓ answer	(1)
9.2.1	$\hat{A}_1 = \hat{D}_1$	[tan chord theorem/raakl - koordst]	√S √ R	
		$[ext \angle \Delta/buite \angle \Delta]$	✓S ✓ R	
	$=\hat{D}_1 + \hat{D}_2$			(4)
9.2.2	$\hat{\mathbf{B}}_4 = \hat{\mathbf{B}}_2$	[vert opp ∠s/regoorst ∠e]	✓S	
	$\hat{\mathbf{D}}_1 + \hat{\mathbf{D}}_2 = \hat{\mathbf{B}}_2$	[proven/bewys]		
	= Ĝ ₂ ∴ AGCD is cyc o	[∠s in same segment/∠e in dies_segment] quad/kvh=[converse ext∠ cyc quad/omgek buite∠ kvi	h]	(4)
9.2.3	$\hat{\mathbf{D}}_1 = \hat{\mathbf{A}}_2$	[∠s in same segment/∠e in dies segment]	√S√R	
	$\hat{A}_2 = \hat{F}$ $\therefore \hat{D}_1 = \hat{F}$	[∠s in same segment/∠e in dies segment]	√ S	
	∴DC = CF	[sides opp = \angle s/sye teenoor = \angle e]	✓ R	(4) [13]

Question 10 May June 2016

10.1	Constr/Konstr:	
	Draw line BC such that $MB = AK$ and $MC = AF$	✓ constr/konstr
	Trek lyn BC sodat $MB = AK$ en $MC = AF$	
	Proof/Bewys:	
	In ΔBMC and/en ΔKAF	
	MB = AK [constr/konstr]	
	$\hat{M} = \hat{A}$ [given/gegee]	
	MC = AF [constr/konstr]	
	ΔBMC ■ ΔKAF [s∠s]	√S/R
	∴MBC=AKF or MCB=AFK [■A]	✓S
	but $/maar \hat{V} = \hat{K}$ or $\hat{T} = \hat{F}$ [given/gegee]	
	$\therefore M\hat{B}C = \hat{V} \text{ or } M\hat{C}B = \hat{T}$	✓S
	But these are corresponding ∠s/maar hulle is ooreenk ∠e	45.45
	∴ BC VT [corr ∠s = /ooreenk∠e =]	√S/R
	$\therefore \frac{MV}{MB} = \frac{MT}{MC}$ [prop theorem/eweredighst; BC VT]	√S √R
	but /maar MB = AK and MC = AF [constr/konstr]	
	$\therefore \frac{MV}{AK} = \frac{MT}{AF}$	(7)

Euclidean Geometry Memo

10.2.1(a)	In ΔKGH and ΔKEF	
	Ř is common/gemeen	✓S
	$\hat{H}_2 = \hat{F}$ [ext \angle cyclic quad/buite \angle koordevh]	√S √R
	$\hat{G}_3 = \hat{E}$ [sum $\angle s \triangle OR$ ext $\angle cyclic quad/som \angle e\triangle OR buite \angle koordevh] \therefore \triangle KGH \parallel \triangle KEF [\angle \angle \angle]$	✓ naming third angle OR∠∠∠ (4)
10.2.1(b)	$\frac{EF}{GH} = \frac{KE}{KG}$ [Δs]	√S
	$\therefore \frac{EF}{GH} = \frac{KE}{EF}$ [KG = EF]	√S
	$\therefore EF^2 = KE.GH$	(2)
10.2.1(c)	$\frac{KG}{KF} = \frac{EM}{EF}$ [prop theorem/eweredighst; MG EK]	√S √R
	but EF = KG [given/gegee]	
	$\frac{KG}{H} = \frac{EM}{H}$	√S
	KF KG	(3)
10.2.2	KG ² = EM.KF KE.GH = EM.KF	(3) ✓
	$EM = \frac{20 \times 4}{}$	KE.GH = EM.KF
	16 = 5 units	✓ substitution
		✓ answer
		(3) [19]

Question 8 November 2016

8.1.1	Alternate angles / verviss hoeke, PQ SR		✓ R	
				(1)
8.1.2(a)	$\hat{T}_2 = 70^{\circ}$	$[\angle s \text{ opp} = \text{sides}/\angle e \text{ teenoor} = sye]$	✓ S ✓R	
	$\hat{Q}_1 = 180^{\circ} - 2(70^{\circ})$	[∠s/e ∆ = 180°]		
	= 40°		✓ answer	
				(3)
8.1.2(b)	$\hat{P}_i = 40^\circ$	[tangent chord th/raakl-koordst]	✓ S ✓R	
	•			(2)

0.0.1	AT 20 DI 0 4 14 1 10 0 11 17 T	/0	
8.2.1	AT = 20 [line from centre \perp to chord/lyn vanaf midpt \perp koord]	√S	(1)
8.2.2	$AO^2 = OS^2 + AS^2$ [Pyth: $\triangle AOS$]		
	$OT^2 + AT^2 = OS^2 + AS^2$ [Pyth: $\triangle AOT$]	✓ equating	
	But AS = 24 [line from centre \perp to chord/lyn vanaf midpt \perp koord]	✓ AS = 24	
	$OT^2 + 400 = \left(\frac{7}{15}OT\right)^2 + 576$	✓ substitution	
		$OS = \frac{7}{15}OT$	
	$176 = \frac{176}{225} OT^2$	15	
	$OT^2 = 225$		
	OT = 225 OT = 15	✓ OT	
	01=15		
	$AO = \sqrt{225 + 400}$	✓ radius	(5)
	= 25		(5)
	OR/OF Let OS = 7, then OT = 15		
	In ΔAOT:		
	$AO^2 = 20^2 + 15^2$	✓✓ testing in	
	= 625	ΔΑΟΤ	
	AO = 25	✓✓ testing in	
	In ΔAOS:	ΔAOS	
	$AO^2 = 24^2 + 7^2$		
	= 625 AO - 25	✓ conclusion	
	AO = 25 ∴ OA = 25		(5)
	OR/OF		
	$AO^2 = OS^2 + AS^2$ [Pyth: $\triangle AOS$]	✓ equating	
	$OT^2 + AT^2 = OS^2 + AS^2$ [Pyth: $\triangle AOT$]		
	Let OT = $15x$. Then OS = $7x$	✓ AS = 24 ✓ substitution	
	But AS = 24 [line from centre \perp to chord/lyn vanaf midpt \perp koord] $(15x)^2 + 400 = (7x)^2 + 576$	• substitution	
	$225x^2 + 400 = 49x^2 + 576$		
	$176x^2 = 176$	✓ x = 1	
	x=1	✓ radius	
	∴ AO = $\sqrt{225 + 400}$ = 25		(5)
		✓ AS = 24	
	OR/OF		

AS = 24 [line from centre
$$\perp$$
 to chord/lyn vanaf midpt \perp koord]

$$AO^{2} = OS^{2} + AS^{2} \qquad [Pyth : \triangle AOS]$$

$$= \left(\frac{7}{15}OT\right)^{2} + AS^{2}$$

$$AO^{2} = \frac{49}{225}(AO^{2} - 20^{2}) + 24^{2} [Pyth : \triangle AOT]$$

$$\frac{176}{225}AO^{2} = \frac{4400}{9}$$

$$AO^{2} = 625$$

$$AO = 25$$

$$(5)$$

$$AO = 10$$

$$AO =$$

Question 9 November 2016

9.1.1	tangent chord theorem/raaklyn-koordstelling	✓ R
		(1)
9.1.2	corresponding/ooreenkomstige ∠s/e; FB DC	✓ R (1)
9.2	$\hat{E}_1 = B\hat{C}D$	√S
	∴ BCDE = cyclic quad [converse ext ∠ cyc quad/omgek: buite∠kdvh]	✓ R (2)
9.3	$\hat{D}_2 = \hat{E}_2$ [$\angle s$ in the same segment/ $\angle e$ in dies segment]	✓S
	$\hat{D}_2 = F\hat{B}D$ [alt $\angle s$, BF CD verwiss $\angle e$,BF CD]	√S
		(2)
9.4	$\hat{B}_3 = y$ OR $\hat{B}_3 = \hat{C}_2$ [$\angle s$ in the same segment/ $\angle e$ in dies segment]	√S
	$\hat{B}_2 = x - y$ OR $\hat{B}_3 + \hat{B}_2 = x$ [from 9.3 and 9.4]	✓S
	$\hat{C}_1 = x - y$ [from 9.2 and 9.3]	✓ S
	$\therefore \hat{\mathbf{B}}_{2} = \hat{\mathbf{C}}_{1}$	(3)
	OR/OF	(:1 ::0: 41
	In ΔBFE and ΔBEC	✓ identifying Δ's
	$\hat{\mathbf{E}}_1 = \hat{\mathbf{E}}_2$ $[=x]$	√ S
	$\hat{F} = \hat{B}_3 + \hat{B}_4$ [tan - chord theorem]	✓S
	∴ ΔBFE///ΔCBE [∠,∠,∠]	
	$\therefore \hat{\mathbf{B}}_2 = \hat{\mathbf{C}}_1$	(3) [9]

Question 10 November 2016

10.1	Constr: Join S to R and T to Q and draw from T \perp PS/ Verbind SR en TQ en tree van T \perp PS]		✓ constr/konstruksie
	Proof:		
	$\frac{\text{area } \Delta PST}{\text{area } \Delta QST} = \frac{\frac{1}{2}PS \times h_2}{\frac{1}{2}SQ \times h_2} = \frac{PS}{SQ}$	equal altitudes	$\sqrt{\frac{\text{area }\Delta PST}{\text{area }\Delta QST}}$ $\frac{1}{2}PS \times h_2$
	$\frac{\text{area } \Delta PST}{\text{area } \Delta STR} = \frac{\frac{1}{2}PT \times h_1}{\frac{1}{2}TR \times h_1} = \frac{PT}{TR}$	equal altitudes	$= \frac{2}{\frac{1}{2}SQ \times h_2}$ $\sqrt{\frac{\text{area } \Delta PST}{\text{area } \Delta STR}} = \frac{PT}{TR}$
	area $\triangle PST$ = area $\triangle PST$ [6]	common]	area Morre Tre
	But area $\triangle QST = \text{area } \triangle STR$	same base, height; ST QR]	
	$\therefore \frac{\text{area } \Delta PST}{\text{area } \Delta QST} = \frac{\text{area } \Delta PST}{\text{area } \Delta STR}$		√S √R
	$\therefore \frac{PS}{SQ} = \frac{PT}{TR}$		✓S
			(6)

10.2.1	Corresponding/Ooreenkomstige ∠s/e; GF LK	✓ R (1)
10.2.2(a)	$\frac{GL}{LM} = \frac{FK}{KM}$ OR $\frac{GL}{y} = \frac{2x}{x}$ [prop theorem/eweredighst; GF LK]	√s √ R
	$\frac{2GH}{v} = \frac{2x}{x}$ [LH=HG]	✓ GL = 2GH
	∴ GH = y	(3)

10.2.2(b)	$\vec{K}_1 = G\hat{F}M$	[corresponding/ooreenkomst∠s; GF LK]	
	$L\hat{K}M$ or $\bar{K}_1 = M\hat{H}F$	[ext ∠ cyclic quad/buite∠koordevh]	√S √ R
	MĤF = GÊM		✓S
	In ΔMFH and ΔMGF:		1.0
	$\hat{\mathbf{M}} = \hat{\mathbf{M}}$	[common/gemeen]	√S
	$M\hat{H}F = G\hat{F}M$	[proven/benys]	1.
	∴ AMFH AMGF	[222]	✓ R (5)
	OR/OR		(5)
	$\bar{K}_1 = G\hat{F}M$	[corresponding/ooreenkomst∠s; GF LK]	
	$L\hat{K}M$ or $\hat{K}_1 = M\hat{H}F$	[ext ∠ cyclic quad/buite∠koordevh]	√S√R
	$M\hat{H}F = G\hat{F}M$		√S
	In ΔMFH and ΔMGF:		
	$\hat{\mathbf{M}} = \hat{\mathbf{M}}$	[common/gemeen]	√ S
	MĤF = GÊM	[proven/benys]	✓s
	$\hat{F}_2 = \hat{G}$	$[\angle s \text{ of } \Delta = 180^{\circ}]$	(5)
10.2.2(e)	∴ ΔMFH ΔMGF GF MF		+
20.2.2(0)	$\therefore \frac{GI}{FH} = \frac{MI}{MH}$	[∆s]	√S √R
	$=\frac{3x}{}$		
	$-\frac{1}{2y}$		(2)
10.2.3	$\frac{\text{MF}}{\text{MH}} = \frac{\text{MG}}{\text{MF}}$	[\(\Delta s \)]	✓S
	$\frac{3x}{2y} = \frac{3y}{3x}$	[from 10.2.2(c)]	✓substitution
	$v^2 = 9 - 3$		✓
	$\frac{y^2}{x^2} = \frac{9}{6} = \frac{3}{2}$		simplificatio
	v 3		n
	$\frac{y}{x} = \sqrt{\frac{3}{2}}$		423
			(3) [20]